[ad_1]
Matsui, T. & Abe, Y. Evolution of an impact-induced environment and magma ocean on the accreting Earth. Nature 319, 303–305 (1986).
Tonks, W. B. & Melosh, H. J. Magma ocean formation as a consequence of large impacts. J. Geophys. Res. 98, 5319–5333 (1993).
Canup, R. M. & Asphaug, E. Origin of the Moon in a large impression close to the top of the Earth’s formation. Nature 412, 708–712 (2001).
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Proof from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr in the past. Nature 409, 175–178 (2001).
Harrison, T. M. The Hadean crust: Proof from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009).
Sleep, N. H. & Zahnle, Ok. Carbon dioxide biking and implications for local weather on historic Earth. J. Geophys. Res. 106, 1373–1399 (2001).
Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Misplaced Metropolis Hydrothermal Discipline. Science 307, 1428–1434 (2005).
Proskurowski, G. et al. Abiogenic hydrocarbon manufacturing at Misplaced Metropolis hydrothermal discipline. Science 319, 604–607 (2008).
Klein, F., Grozeva, N. G. & Seewald, J. S. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc. Natl Acad. Sci. 116, 17666–17672 (2019).
Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013).
Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the local weather and ocean pH of the early Earth with a geological carbon cycle mannequin. Proc. Natl Acad. Sci. 115, 4105–4110 (2018).
Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric development for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).
Lebrun, T. et al. Thermal evolution of an early magma ocean in interplay with the environment. J. Geophys. Res. Planet. 118, 1155–1176 (2013).
Hamano, Ok., Abe, Y. & Genda, H. Emergence of two forms of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).
Salvador, A. et al. The relative affect of H2O and CO2 on the primitive floor circumstances and evolution of rocky planets. J. Geophys. Res. Planet. 122, 1458–1486 (2017).
Bower, D. J. et al. Linking the evolution of terrestrial interiors and an early outgassed environment to astrophysical observations. Astron. Astrophys. 631, A103 (2019).
Hirschmann, M. M. Magma ocean affect on early environment mass and composition. Earth Planet. Sci. Lett. 341–344, 48–57 (2012).
Deng, J., Du, Z., Karki, B. B., Ghosh, D. B. & Lee, Ok. Ok. A magma ocean origin to divergent redox evolutions of rocky planetary our bodies and early atmospheres. Nat. Commun. 11, 2007 (2020).
Abe, Y. Bodily state of the very early Earth. Lithos 30, 223–235 (1993).
Catling, D. C. & Zahnle, Ok. J. The Archean environment. Sci. Adv. 6, eaax1420 (2020).
Solomatov, V. S. In Treatise on Geophysics. Quantity 9: Evolution of the Earth 1st edn (ed. Schubert G.) 91–119 (Elsevier, 2007).
Hier-Majumder, S. & Hirschmann, M. M. The origin of volatiles within the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 3078–3092 (2017).
Kawamoto, T. & Holloway, J. R. Melting temperature and partial soften chemistry to H2O-saturated mantle peridotite to 11 gigapascals. Science 276, 240–243 (1997).
Katz, R. F., Spiegelman, M. & Langmuir, C. H. A brand new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).
Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and penalties for deep Earth risky cycles. Chem. Geol. 262, 4–16 (2009).
Korenaga, J., Planavsky, N. J. & Evans, D. A. D. International water cycle and the coevolution of the Earth’s inside and floor atmosphere. Philos. Trans. R. Soc. A 375, 20150393 (2017).
Maurice, M. et al. Onset of solid-state mantle convection and mixing throughout magma ocean solidification. J. Geophys. Res. Planet. 122, 577–598 (2017).
Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical penalties: 2. Compositional differentiation beneath crystal accumulation and matrix compaction. J. Geophys. Res. Stable Earth 124, 3399–3419 (2019).
Clean, J. G. & Brooker, R. A. In Evaluations in Mineralogy and Geochemistry. Quantity 30: Volatiles in Magmas (eds Carrol, M. R. & Holloway, J. R.) 157–186 (Mineralogical Society of America, 1994).
Abe, Y. In Evolution of the Earth and Planets (eds Takahashi, E. et al.) 41–54 (AGU, 1993).
Hirth, G. & Kohlstedt, D. L. Water within the oceanic higher mantle: implications for rheology, soften extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).
Jain, C., Korenaga, J. & Karato, S.-i International evaluation of experimental knowledge on the rheology of olivine aggregates. J. Geophys. Res. Stable Earth 124, 310–334 (2019).
Korenaga, J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics within the early Earth. J. Geophys. Res. 116, B12403 (2011).
Korenaga, J. Plate tectonics and floor atmosphere: position of the oceanic higher mantle. Earth Sci. Rev. 205, 103185 (2020).
Zahnle, Ok. et al. Emergence of a liveable planet. Area Sci. Rev. 129, 35–78 (2007).
Korenaga, J. Energetics of mantle convection and the destiny of fossil warmth. Geophys. Res. Lett. 30, 1437 (2003).
Bradley, D. C. Passive margins via earth historical past. Earth Sci. Rev. 91, 1–26 (2008).
Herzberg, C., Condie, Ok. & Korenaga, J. Thermal historical past of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).
Pehrsson, S. J., Eglington, B. M., Evans, D. A., Huston, D. & Reddy, S. M. Metallogeny and its hyperlink to orogenic type throughout the Nuna supercontinent cycle. Geol. Soc. Spec. Publ. 424, 83–94 (2016).
Plesa, A.-C., Tosi, N. & Breuer, D. Can a fractionally crystallized magma ocean clarify the thermo-chemical evolution of Mars? Earth Planet. Sci. Lett. 403, 225–235 (2014).
Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. III The pMELTS: A revision of MELTS for improved calculation of section relations and main factor partitioning associated to partial melting of the mantle to three GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002).
Gualda, G. A., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic techniques. J. Petrol. 53, 875–890 (2012).
Korenaga, J. In Archean Geodynamics and Environments (eds Benn, Ok. et al.) 7–32 (AGU, 2006).
Davies, G. F. On the emergence of plate tectonics. Geology 20, 963–966 (1992).
Korenaga, J. Scaling of plate tectonic convection with pseudoplastic rheology. J. Geophys. Res. 115, B11405 (2010).
Diamond, L. W. & Akinfiev, N. N. Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: analysis of literature knowledge and thermodynamic modelling. Fluid Section Equilib. 208, 265–290 (2003).
Alt, J. C. & Teagle, D. A. The uptake of carbon throughout alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).
Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Hen, D. Ok. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. 101, 12818–12823 (2004).
Schulte, M., Blake, D., Hoehler, T. & McCollom, T. Serpentinization and its implications for all times on the early Earth and Mars. Astrobiology 6, 364–376 (2006).
Lambert, J. B., Gurusamy-Thangavelu, S. A. & Ma, Ok. The silicate-mediated formose response: bottom-up synthesis of sugar silicates. Science 327, 984–986 (2010).
Davies, G. F. Gravitational depletion of the early Earth’s higher mantle and the viability of early plate tectonics. Earth Planet. Sci. Lett. 243, 376–382 (2006).
Zahnle, Ok. J., Kasting, J. F. & Pollack, J. B. Evolution of a steam environment throughout Earth’s accretion. Icarus 74, 62–97 (1988).
Dullien, F. A. L. Porous Media: Fluid Transport and Pore Construction 2nd edn (Educational, 1992).
Zahnle, Ok. J., Lupu, R., Dobrovolskis, A. & Sleep, N. H. The tethered Moon. Earth Planet. Sci. Lett. 427, 74–82 (2015).
Trønnes, R. G. & Frost, D. J. Peridotite melting and mineral-melt partitioning of main and minor components at 22–24.5 GPa. Earth Planet. Sci. Lett. 197, 117–131 (2002).
Corgne, A., Liebske, C., Wooden, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of hint components and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005).
Parsons, B. Causes and penalties of the relation between space and age of the ocean flooring. J. Geophys. Res. 87, 289–302 (1982).
Zhang, G., Mei, S. & Tune, M. Impact of water on the dislocation creep of enstatite aggregates at 300 MPa. Geophys. Res. Lett. 47, e2019GL085895 (2020).
Aubaud, C., Hauri, E. H. & Hirschmann, M. M. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 31, L20611 (2004).
de Capitani, C. & Petrakakis, Ok. The computation of equilibrium assemblage diagrams with Theriak/Domino software program. Am. Mineral. 95, 1006–1016 (2010).
McKenzie, D. The technology and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).
Christensen, U. R. Thermal evolution fashions for the Earth. J. Geophys. Res. 90, 2995–3007 (1985).
Korenaga, J. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the technology of plate tectonics? J. Geophys. Res. 112, B05408 (2007).
Tackley, P. J. In Treatise on Geophysics: Quantity 7: Mantle Dynamics 2nd edn (ed. Schubert G.) 521–585 (Elsevier, 2015).
Nakajima, S., Hayashi, Y.-Y. & Abe, Y. A examine on the “runaway greenhouse impact” with a one-dimensional radiative–convective equilibrium mannequin. J. Atmos. Sci. 49, 2256–2266 (1992).
Johnson, S. S., Mischna, M. A., Grove, T. L. & Zuber, M. T. Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. Planet. 113, E08005 (2008).
Abe, Y. & Matsui, T. The formation of an impact-generated H2O environment and its implications for the early thermal historical past of the Earth. J. Geophys. Res. Suppl. 90, C545–C559 (1985).
Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s inside. Earth Planet. Sci. Lett. 298, 1–13 (2010).
Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, principally comes up. Proc. Natl Acad. Sci. 112, E3997–E4006 (2015).
Sleep, N. H., Zahnle, Ok. & Neuhoff, P. S. Initiation of clement floor circumstances on the earliest Earth. Proc. Natl Acad. Sci. 98, 3666–3672 (2001).
Peterson, M. N. A. Calcite: charges of dissolution in a vertical profile within the central Pacific. Science 154, 1542–1544 (1966).
Andersson, A. J. In Treatise on Geochemistry. Quantity 8: The Oceans and Marine Geochemistry 2nd edn (eds Holland, H. D. & Turekian, Ok.) 519–542 (Elsevier, 2014).
Kelemen, P. B. et al. Charges and mechanisms of mineral carbonation in peridotite: pure processes and recipes for enhanced, in situ CO2 seize and storage. Annu. Rev. Earth Planet. Sci. 39, 545–576 (2011).
Syracuse, E. M., van Keken, P. E. & Abers, G. A. The worldwide vary of subduction zone thermal fashions. Phys. Earth Planet. Inter. 183, 73–90 (2010).
Dasgupta, R., Hirschmann, M. M. & Withers, A. C. Deep international biking of carbon constrained by the solidus of anhydrous, carbonated eclogite beneath higher mantle circumstances. Earth Planet. Sci. Lett. 227, 73–85 (2004).
Korenaga, J. On the extent of mantle hydration brought on by plate bending. Earth Planet. Sci. Lett. 457, 1–9 (2017).
Miller, N. C., Lizarralde, D., Collins, J. A., Holbrook, W. S. & Van Avendonk, H. J. Restricted mantle hydration by bending faults on the center America trench. J. Geophys. Res. Stable Earth 126, e2020JB020982 (2021).
Miyazaki, Y. & Korenaga, J. Results of chemistry on vertical mud movement in early protoplanetary disks. Astrophys. J. 849, 41 (2017).
Wirth, E. A. & Korenaga, J. Small-scale convection within the subduction zone mantle wedge. Earth Planet. Sci. Lett. 357–358, 111–118 (2012).
Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Methodology and outcomes. J. Geophys. Res. 112, B03211 (2007).
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J.-G. The imply composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).
[ad_2]