viernes, enero 27, 2023
InicioNatureActual-space visualization of intrinsic magnetic fields of an antiferromagnet

Actual-space visualization of intrinsic magnetic fields of an antiferromagnet

[ad_1]

  • Shibata, N. et al. Differential phase-contrast microscopy at atomic decision. Nat. Phys. 8, 611–615 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Shibata, N. et al. Electrical subject imaging of single atoms. Nat. Commun. 8, 15631 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shibata, N. et al. Atomic decision electron microscopy in a magnetic subject free atmosphere. Nat. Commun. 10, 2308 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials within the quantum principle. Phys. Rev. 115, 485–491 (1959).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Zweck, J. Imaging of magnetic and electrical fields by electron microscopy. J. Phys. Condens. Matter 28, 403001 (2016).

    Article 

    Google Scholar
     

  • Chapman, J. N. The investigation of magnetic area constructions in skinny foils by electron microscopy. J. Phys. D 17, 623–647 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Matsumoto, T. et al. Direct commentary of Σ7 grain boundary core construction in magnetic skyrmion lattice. Sci. Adv. 2, e1501280 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Chen, C. L. et al. Direct willpower of atomic construction and magnetic coupling of magnetite twin boundaries. ACS Nano 12, 2662–2668 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Shibata, N. et al. New space detector for atomic-resolution scanning transmission electron microscopy. J. Electron Microsc. 59, 473–479 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Sánchez-Santolino, G. et al. Probing the inner atomic cost density distributions in actual house. ACS Nano 12, 8875–8881 (2018).

    Article 

    Google Scholar
     

  • Shindo, D. & Murakami, Y. Electron holography of magnetic supplies. J. Phys. D 41, 183002 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Rother, A. & Scheerschmidt, Ok. Relativistic results in elastic scattering of electrons in TEM. Ultramicroscopy 109, 154–160 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Edström, A., Lubk, A. & Rusz, J. Quantum mechanical remedy of atomic-resolution differential section distinction imaging of magnetic supplies. Phys. Rev. B 99, 174428 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Sawada, H. et al. Correction of upper order geometrical aberration by triple 3-fold astigmatism subject. J. Electron Microsc. 58, 341–347 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Morin, F. J. Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys. Rev. 78, 819–820 (1950).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shull, C. G., Strauser, W. A. & Wollan, E. O. Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys. Rev. 83, 333–345 (1951).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Brok, E. et al. Spin orientation in stable answer hematite-ilmenite. Am. Mineral. 102, 1234–1243 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Ishizuka, A. et al. Boundary-artifact-free willpower of potential distribution from differential section distinction alerts. Microscopy 66, 397–405 (2017).

    Article 

    Google Scholar
     

  • Egerton, R. F. Electron Power-Loss Spectroscopy within the Electron Microscope third edn (Springer, 2011).

  • Tanigaki, T. et al. Magnetic subject observations in CoFeB/Ta layers with 0.67-nm decision by electron holography. Sci. Rep. 7, 16598 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Shut, R., Chen, Z., Shibata, N. & Findlay, S. D. In direction of quantitative, atomic-resolution reconstruction of the electrostatic potential by way of differential section distinction utilizing electrons. Ultramicroscopy 159, 124–137 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Jones, L. et al. Good Align—a brand new device for sturdy non-rigid registration of scanning microscope information. Adv. Struct. Chem. Imaging 1, 8 (2015).

    Article 

    Google Scholar
     

  • Iakoubovskii, Ok., Mitsuishi, Ok., Nakayama, Y. & Furuya, Ok. Imply free path of inelastic electron scattering in elemental solids and oxides utilizing transmission electron microscopy: atomic quantity dependent oscillatory conduct. Phys. Rev. B 77, 104102 (2008).

    ADS 
    Article 

    Google Scholar
     

  • Loudon, J. C. Antiferromagnetism in NiO noticed by transmission electron diffraction. Phys. Rev. Lett. 109, 267204 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Brown, P. J. In Worldwide Tables for Crystallography Vol. C (ed. Prince, E.) 454–461 (Kluwer Tutorial, 2006).

  • Krén, E., Szabó, P. & Konczos, G. Neutron diffraction research on (1 − x)Fe2O3xRh2O3 system. Phys. Lett. 19, 103–104 (1965).

    ADS 
    Article 

    Google Scholar
     

  • Müller, Ok. et al. Atomic electrical fields revealed by a quantum mechanical strategy to electron picodiffraction. Nat. Commun. 5, 5653 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Lubk, A. & Zweck, J. Differential section distinction: an integral perspective. Phys. Rev. A 91, 023805 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Lugg, N. R., Neish, M. J., Findlay, S. D. & Allen, L. J. Sensible facets of eradicating the results of elastic and thermal diffuse scattering from spectroscopic information for single crystals. Microsc. Microanal. 20, 1078–1089 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Campanini, M., Nasi, L., Albertini, F. & Erni, R. Disentangling nanoscale electrical and magnetic fields by time-reversal operation in differential phase-contrast STEM. Appl. Phys. Lett. 117, 154102 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí