miércoles, octubre 5, 2022
InicioNatureCrystallographic snapshots of a B12-dependent radical SAM methyltransferase

Crystallographic snapshots of a B12-dependent radical SAM methyltransferase

[ad_1]

  • 1.

    Conrad, R. The worldwide methane cycle: latest advances in understanding the microbial processes concerned. Env. Microbiol. Rep. 1, 285–292 (2009).

    CAS 

    Google Scholar
     

  • 2.

    Tapio, I., Snelling, T. J., Strozzi, F. & Wallace, R. J. The ruminal microbiome related to methane emissions from ruminant livestock. J. Anim. Sci. Biotech. 8, 7 (2017).


    Google Scholar
     

  • 3.

    Ermler, U., Grabarse, W., Shima, S., Goubeaud, M. & Thauer, R. Okay. Crystal construction of methyl-coenzyme M reductase: the important thing enzyme of organic methane formation. Science 278, 1457–1462 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Wagner, T., Wegner, C. E., Kahnt, J., Ermler, U. & Shima, S. Phylogenetic and structural comparisons of the three sorts of methyl coenzyme M reductase from Methanococcales and Methanobacteriales. J. Bacteriol. 199, e00197–17 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Kahnt, J. et al. Put up-translational modifications within the energetic website area of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea. FEBS J. 274, 4913–4921 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Lyu, Z. et al. Posttranslational methylation of arginine in methyl coenzyme M reductase has a profound impression on each methanogenesis and development of Methanococcus maripaludis. J. Bacteriol. 202, e00654–19 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Deobald, D., Adrian, L., Schone, C., Rother, M. & Layer, G. Identification of a singular radical SAM methyltransferase required for the sp3-C-methylation of an arginine residue of methyl-coenzyme M reductase. Sci. Rep. 8, 7404 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Radle, M. I., Miller, D. V., Laremore, T. N. & Booker, S. J. Methanogenesis marker protein 10 (Mmp10) from Methanosarcina acetivorans is a radical S-adenosylmethionine methylase that unexpectedly requires cobalamin. J. Biol. Chem. 294, 11712–11725 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Benjdia, A., Balty, C. & Berteau, O. Radical SAM enzymes within the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Entrance. Chem. 5, 87 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Benjdia, A. & Berteau, O. Sulfatases and radical SAM enzymes: rising themes in glycosaminoglycan metabolism and the human microbiota. Biochem. Soc. Trans. 44, 109–115 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Wongnate, T. et al. The unconventional mechanism of organic methane synthesis by methyl-coenzyme M reductase. Science 352, 953–958 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Nayak, D. D. et al. Purposeful interactions between posttranslationally modified amino acids of methyl-coenzyme M reductase in Methanosarcina acetivorans. PLoS Biol. 18, e3000507 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Pierre, S. et al. Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nat. Chem. Biol. 8, 957–959 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Benjdia, A. et al. The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl switch response. Nat. Commun. 6, 8377 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Kim, H. J. et al. GenK-catalyzed C-6′ methylation within the biosynthesis of gentamicin: isolation and characterization of a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 135, 8093–8096 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Wang, Y. & Begley, T. P. Mechanistic research on CysS—a vitamin B12-dependent radical SAM methyltransferase concerned within the biosynthesis of the tert-butyl group of cystobactamid. J. Am. Chem. Soc. 142, 9944–9954 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Wang, Y., Schnell, B., Baumann, S., Muller, R. & Begley, T. P. Biosynthesis of branched alkoxy teams: iterative methyl group alkylation by a cobalamin-dependent radical SAM enzyme. J. Am. Chem. Soc. 139, 1742–1745 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Marous, D. R. et al. Consecutive radical S-adenosylmethionine methylations type the ethyl facet chain in thienamycin biosynthesis. Proc. Natl Acad. Sci. USA 112, 10354–10358 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    McLaughlin, M. I., Pallitsch, Okay., Wallner, G., van der Donk, W. A. & Hammerschmidt, F. Total retention of methyl sereochemistry throughout B12-dependent radical SAM methyl switch in fosfomycin biosynthesis. Biochemistry 60, 1587–1596, (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Zhong, A., Lee, Y. H., Liu, Y. N. & Liu, H. W. Biosynthesis of oxetanocin-A features a B12-dependent radical SAM enzyme that may catalyze each oxidative ring contraction and the demethylation of SAM. Biochemistry 60, 537–546 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Guardian, A. et al. The B12-radical SAM enzyme PoyC catalyzes valine Cβ-methylation throughout polytheonamide biosynthesis. J. Am. Chem. Soc. 138, 15515–15518 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Holliday, G. L. et al. Atlas of the unconventional SAM superfamily: divergent evolution of perform utilizing a “plug and play” area. Strategies Enzymol. 606, 1–71 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Benjdia, A. & Berteau, O. Radical SAM enzymes and ribosomally-synthesized and post-translationally modified peptides: a rising significance within the microbiomes. Entrance. Chem. 9, 678068 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Knox, H. L. et al. Structural foundation for non-radical catalysis by TsrM, a radical SAM methylase. Nat. Chem. Biol. 17, 485–491 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Werner, W. J. et al. In vitro phosphinate methylation by PhpK from Kitasatospora phosalacinea. Biochemistry 50, 8986–8988 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Yang, Z. M. & Bauer, C. E. Rhodobacter capsulatus genes concerned in early steps of the bacteriochlorophyll biosynthetic pathway. J. Bacteriol. 172, 5001–5010 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Bridwell-Rabb, J., Zhong, A., Solar, H. G., Drennan, C. L. & Liu, H. W. A B12-dependent radical SAM enzyme concerned in oxetanocin A biosynthesis. Nature 544, 322–326 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Berteau, O. & Benjdia, A. DNA restore by the unconventional SAM enzyme spore photoproduct lyase: from biochemistry to structural investigations. Photochem. Photobiol. 93, 67–77 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Broderick, J. B., Duffus, B. R., Duschene, Okay. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Frey, P. A., Hegeman, A. D. & Ruzicka, F. J. The unconventional SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Fontecave, M., Atta, M. & Mulliez, E. S-adenosylmethionine: nothing goes to waste. Traits Biochem. Sci. 29, 243–249, (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Rohac, R. et al. Carbon–sulfur bond-forming response catalysed by the unconventional SAM enzyme HydE. Nat. Chem. 8, 491–500 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Owens, C. P., Katz, F. E., Carter, C. H., Oswald, V. F. & Tezcan, F. A. Tyrosine-coordinated P-cluster in G. diazotrophicus nitrogenase: proof for the significance of O-based ligands in conformationally gated electron switch. J. Am. Chem. Soc. 138, 10124–10127 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Dauter, Z., Wilson, Okay. S., Sieker, L. C., Moulis, J. M. & Meyer, J. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic decision: a high-precision mannequin of a ZnS4 coordination unit in a protein. Proc. Natl Acad. Sci. USA 93, 8836–8840 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T. & Drennan, C. L. Crystal construction of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science 303, 76–79 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Lanciano, P. et al. New methodology for the spin quantitation of [4Fe–4S]+ clusters with S = 3/2. Utility to the FS0 heart of the NarGHI nitrate reductase from Escherichia coli. J. Phys. Chem. B 111, 13632–13637 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Liu, A. & Graslund, A. Electron paramagnetic resonance proof for a novel interconversion of [3Fe–4S]+ and [4Fe–4S]+ clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro. J. Biol. Chem. 275, 12367–12373 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Drennan, C. L., Matthews, R. G. & Ludwig, M. L. Cobalamin-dependent methionine synthase: the construction of a methylcobalamin-binding fragment and implications for different B12-dependent enzymes. Curr. Opin. Struct. Biol. 4, 919–929 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Guardian, A. et al. Mechanistic investigations of PoyD, a radical S-adenosyl-l-methionine enzyme catalyzing iterative and directional epimerizations in polytheonamide A biosynthesis. J. Am. Chem. Soc. 140, 2469–2477 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Tang, W., Jimenez-Oses, G., Houk, Okay. N. & van der Donk, W. A. Substrate management in stereoselective lanthionine biosynthesis. Nat. Chem. 7, 57–64 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Mahanta, N., Hudson, G. A. & Mitchell, D. A. Radical SAM enzymes concerned in RiPP biosynthesis. Biochemistry, https://doi.org/10.1021/acs.biochem.7b00771 (2017).

  • 42.

    Benjdia, A., Guillot, A., Ruffié, P., Leprince, J. & Berteau, O. Put up-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat. Chem. 9, 698–707 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Balty, C. et al. Biosynthesis of the sactipeptide ruminococcin C by the human microbiome: mechanistic insights into thioether bond formation by radical SAM enzymes. J. Biol. Chem. 295, 16665–16677 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Banerjee, R. V., More durable, S. R., Ragsdale, S. W. & Matthews, R. G. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical research. Biochemistry 29, 1129–1135 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Schumacher, W., Holliger, C., Zehnder, A. J. & Hagen, W. R. Redox chemistry of cobalamin and iron-sulfur cofactors within the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett. 409, 421–425 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Shisler, Okay. A. et al. Monovalent cation activation of the unconventional SAM enzyme pyruvate formate-lyase activating enzyme. J. Am. Chem. Soc. 139, 11803–11813 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Dowling, D. P. et al. Radical SAM enzyme QueE defines a brand new minimal core fold and metal-dependent mechanism. Nat. Chem. Biol. 10, 106–112 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Lee, M. et al. Biosynthesis of isoprenoids: crystal construction of the [4Fe–4S] cluster protein IspG. J. Mol. Biol. 404, 600–610 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Demmer, J. Okay. et al. Insights into flavin-based electron bifurcation by way of the NADH-dependent decreased ferredoxin:NADP oxidoreductase construction. J. Biol. Chem. 290, 21985–21995 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Wang, B. et al. Stereochemical and mechanistic investigation of the response catalyzed by Fom3 from Streptomyces fradiae, a cobalamin-dependent radical S-adenosylmethionine methylase. Biochemistry 57, 4972–4984 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Kim, H. J., Liu, Y. N., McCarty, R. M. & Liu, H. W. Response catalyzed by GenK, a cobalamin-dependent radical S-adenosyl-l-methionine methyltransferase within the biosynthetic pathway of gentamicin, proceeds with retention of configuration. J. Am. Chem. Soc. 139, 16084–16087 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Chavas, L. M. G. et al. PROXIMA-1 beamline for macromolecular crystallography measurements at Synchrotron SOLEIL. J. Synchrotron Radiat. 28, 970–976 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Legrand, P. XDSME: XDS made simpler. GitHub https://doi.org/10.5281/zenodo.837885 (2017).

  • 54.

    Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Tickle, I. J. et al. STARANISO (International Phasing, 2018).

  • 56.

    Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated construction resolution with autoSHARP. Strategies Mol. Biol. 364, 215–230 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Schneider, T. R. & Sheldrick, G. M. Substructure resolution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).

    PubMed 

    Google Scholar
     

  • 58.

    de La Fortelle, E. & Bricogne, G. Most-likelihood heavy-atom parameter refinement for a number of isomorphous alternative and multiwavelength anomalous diffraction strategies. Strategies Enzymol. 276, 472–494 (1997).


    Google Scholar
     

  • 59.

    Abrahams, J. P. & Leslie, A. G. Strategies used within the construction willpower of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Cowtan, Okay. The Buccaneer software program for automated mannequin constructing. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006).

    PubMed 

    Google Scholar
     

  • 61.

    Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular mannequin constructing for X-ray crystallography utilizing ARP/wARP model 7. Nat. Protoc. 3, 1171–1179 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Emsley, P. & Cowtan, Okay. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    PubMed 

    Google Scholar
     

  • 63.

    Vagin, A. A. et al. REFMAC5 dictionary: group of prior chemical data and tips for its use. Acta Crystallogr. D 60, 2184–2195 (2004).

    PubMed 

    Google Scholar
     

  • 64.

    Bricogne, G. et al. BUSTER model X.Y.Z. (International Phasing, 2017) (2017).

  • 65.

    McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Jurrus, E. et al. Enhancements to the APBS biomolecular solvation software program suite. Protein Sci. 27, 112–128 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí