miércoles, diciembre 7, 2022
InicioNatureDifferent photosynthesis pathways drive the algal CO2-concentrating mechanism

Different photosynthesis pathways drive the algal CO2-concentrating mechanism

[ad_1]

  • Subject, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Major manufacturing of the biosphere: integrating terrestrial and oceanic parts. Science 281, 237–240 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mackey, Ok. R., Morris, J. J., Morel, F. M. & Kranz, S. A. Response of photosynthesis to ocean acidification. Oceanography 28, 74–91 (2015).

    Article 

    Google Scholar
     

  • Mackinder, L. C. M. et al. A spatial interactome reveals the protein group of the algal CO2-concentrating mechanism. Cell 171, 133–147.e114 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mackinder, L. C. M. The Chlamydomonas CO2-concentrating mechanism and its potential for engineering photosynthesis in vegetation. New Phytol. 217, 54–61 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raven, J. A. Inorganic carbon acquisition by eukaryotic algae: 4 present questions. Photosynth. Res. 106, 123–134 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raven, J. A., Beardall, J. & Giordano, M. Vitality prices of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121, 111–124 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maberly, S. C. & Gontero, B. Ecological imperatives for aquatic CO2-concentrating mechanisms. J. Exp. Bot. 68, 3797–3814 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Savir, Y., Noor, E., Milo, R. & Tlusty, T. Cross-species evaluation traces adaptation of Rubisco towards optimality in a low-dimensional panorama. Proc. Natl Acad. Sci. USA 107, 3475–3480 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 3, 291–315 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Moroney, J. V. et al. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth. Res. 109, 133–149 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duanmu, D., Miller, A. R., Horken, Ok. M., Weeks, D. P. & Spalding, M. H. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3 transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 106, 5990–5995 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Y. & Spalding, M. H. Acclimation to very low CO2: contribution of limiting CO2 inducible proteins, LCIB and LCIA, to inorganic carbon uptake in Chlamydomonas reinhardtii. Plant Physiol. 166, 2040–2050 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yamano, T., Sato, E., Iguchi, H., Fukuda, Y. & Fukuzawa, H. Characterization of cooperative bicarbonate uptake into chloroplast stroma within the inexperienced alga Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 112, 7315–7320 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mukherjee, A. et al. Thylakoid localized bestrophin-like proteins are important for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 116, 16915–16920 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karlsson, J. et al. A novel α-type carbonic anhydrase related to the thylakoid membrane in Chlamydomonas reinhardtii is required for development at ambient CO2. EMBO J. 17, 1208–1216 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raven, J. A. CO2-concentrating mechanisms: a direct position for thylakoid lumen acidification? Plant Cell Environ. 20, 147–154 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Badger, M. R., Kaplan, A. & Berry, J. A. Inner inorganic carbon pool of Chlamydomonas reinhardtii. Plant Physiol. 66, 407–413 (1980).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allen, J. F. Photosynthesis of ATP—electrons, proton pumps, rotors, and poise. Cell 110, 273–276 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Allen, J. F. Cyclic, pseudocyclic and noncyclic photophosphorylation: new hyperlinks within the chain. Developments Plant Sci. 8, 15–19 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Munekage, Y. et al. PGR5 is concerned in cyclic electron stream round photosystem I and is crucial for photoprotection in Arabidopsis. Cell 110, 361–371 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johnson, X. et al. Proton gradient regulation 5-mediated cyclic electron stream underneath ATP- or redox-limited situations: a research of ΔATPase pgr5 and ΔrbcL pgr5 mutants within the inexperienced alga Chlamydomonas reinhardtii. Plant Physiol. 165, 438–452 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • DalCorso, G. et al. A fancy containing PGRL1 and PGR5 is concerned within the swap between linear and cyclic electron stream in Arabidopsis. Cell 132, 273–285 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tolleter, D. et al. Management of hydrogen photoproduction by the proton gradient generated by cyclic electron stream in Chlamydomonas reinhardtii. Plant Cell 23, 2619–2630 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Curien, G. et al. The water to water cycles in microalgae. Plant Cell Physiol. 57, 1354–1363 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Helman, Y. et al. Genes encoding a-type flavoproteins are important for photoreduction of O2 in cyanobacteria. Curr. Biol. 13, 230–235 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gerotto, C. et al. Flavodiiron proteins act as security valve for electrons in Physcomitrella patens. Proc. Natl Acad. Sci. USA 113, 12322–12327 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shimakawa, G. et al. The Liverwort, Marchantia, drives various electron stream utilizing a flavodiiron protein to guard PSI. Plant Physiol. 173, 1636–1647 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chaux, F. et al. Flavodiiron proteins promote quick and transient O2 photoreduction in Chlamydomonas. Plant Physiol. 174, 1825–1836 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dang, Ok. V. et al. Mixed will increase in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron stream in Chlamydomonas reinhardtii. Plant Cell 26, 3036–3050 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bailleul, B. et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524, 366 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Y., Stessman, D. J. & Spalding, M. H. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works in opposition to the gradient. Plant J. 82, 429–448 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kono, A. & Spalding, M. H. LCI1, a Chlamydomonas reinhardtii plasma membrane protein, capabilities in lively CO2 uptake underneath low CO2. Plant J. 102, 1127–1141 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bonente, G. et al. Evaluation of LhcSR3, a protein important for suggestions de-excitation within the inexperienced alga Chlamydomonas reinhardtii. PLoS Biol. 9, e1000577 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tian, L. et al. pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proc. Natl Acad. Sci. USA 116, 8320–8325 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sültemeyer, D. F., Klug, Ok. & Fock, H. P. Impact of dissolved inorganic carbon on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions tailored to ambient and CO2-enriched air. Photosynth. Res. 12, 25–33 (1987).

    PubMed 
    Article 

    Google Scholar
     

  • Sültemeyer, D., Biehler, Ok. & Fock, H. P. Proof for the contribution of pseudocyclic photophosphorylation to the power requirement of the mechanism for concentrating inorganic carbon in Chlamydomonas. Planta 189, 235–242 (1993).

    Article 

    Google Scholar
     

  • Lucker, B. & Kramer, D. M. Regulation of cyclic electron stream in Chlamydomonas reinhardtii underneath fluctuating carbon availability. Photosynthesis Res. 117, 449–459 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Qu, Z. & Hartzell, H. C. Bestrophin Cl channels are extremely permeable to HCO3. Am. J. Physiol. Cell Physiol. 294, C1371–C1377 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rost, B., Riebesell, U., Burkhardt, S. & Sültemeyer, D. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 48, 55–67 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Basu, S. & Mackey, Ok. R. M. Phytoplankton as key mediators of the organic carbon pump: their responses to a altering local weather. Sustainability 10, 869 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Atkinson, N. et al. Introducing an algal carbon-concentrating mechanism into larger vegetation: location and incorporation of key parts. Plant Biotechnol. J. 14, 1302–1315 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meyer, M. T., McCormick, A. J. & Griffiths, H. Will an algal CO2-concentrating mechanism work in larger vegetation? Curr. Opin. Plant Biol. 31, 181–188 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nölke, G. et al. The combination of algal carbon focus mechanism parts into tobacco chloroplasts will increase photosynthetic effectivity and biomass. Biotechnol. J. 14, 1800170 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hennacy, J. H. & Jonikas, M. C. Prospects for engineering biophysical CO2 concentrating mechanisms into land vegetation to boost yields. Annu. Rev. Plant Biol. 71, 461–485 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yamamoto, H., Takahashi, S., Badger, M. R. & Shikanai, T. Synthetic remodelling of different electron stream by flavodiiron proteins in Arabidopsis. Nat. Crops 2, 16012 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wada, S. et al. Flavodiiron protein substitutes for cyclic electron stream with out competing CO2 assimilation. Plant Physiol. 176, 1509–1518 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gómez, R. et al. Quicker photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts. Photosynth. Res. 136, 129–138 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Vicino, P. et al. Expression of flavodiiron proteins Flv2–Flv4 in chloroplasts of Arabidopsis and tobacco vegetation supplies a number of stress tolerance. Int. J. Mol. Sci. 22, 1178 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burlacot, A., Burlacot, F., Li-Beisson, Y. & Peltier, G. Membrane inlet mass spectrometry: a strong instrument for algal analysis. Entrance. Plant. Sci. 11, 1302 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burlacot, A. et al. Flavodiiron-mediated O2 photoreduction hyperlinks H2 manufacturing with CO2 fixation through the anaerobic induction of photosynthesis. Plant Physiol. 177, 1639–1649 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burlacot, A., Richaud, P., Gosset, A., Li-Beisson, Y. & Peltier, G. Algal photosynthesis converts nitric oxide into nitrous oxide. Proc. Natl Acad. Sci. USA 117, 2704–2709 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Desplats, C. et al. Characterization of Nda2, a plastoquinone-reducing kind II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J. Biol. Chem. 284, 4148–4157 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamano, T. et al. Gentle and low-CO2-dependent LCIB–LCIC advanced localization within the chloroplast helps the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol. 51, 1453–1468 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moroney, J. V. et al. Isolation and characterization of a mutant of Chlamydomonas reinhardtii poor within the CO2 concentrating mechanism. Plant Physiol. 89, 897–903 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gerster, R. An try and interpret the kinetics of isotope trade between C18O2 and the water of a leaf: experiments in the dead of night. Planta 97, 155–172 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Silverman, D. N. In Strategies in Enzymology Vol. 87 (ed. Purich, D. L.) 732–752 (Educational Press, 1982).

  • Cruz, J. A., Sacksteder, C. A., Kanazawa, A. & Kramer, D. M. Contribution of electrical area (Δψ) to steady-state transthylakoid proton driver (pmf) in vitro and in vivo. management of pmf parsing into Δψ and ΔpH by ionic power. Biochem. 40, 1226–1237 (2001).

    CAS 
    Article 

    Google Scholar
     

  • Douchi, D. et al. Membrane-inlet mass spectrometry allows a quantitative understanding of inorganic carbon uptake flux and carbon concentrating mechanisms in metabolically engineered cyanobacteria. Entrance. Microbiol. 10, 1356–1356 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kramer, D. M. & Evans, J. R. The significance of power steadiness in bettering photosynthetic productiveness. Plant Physiol. 155, 70–78 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí