Inicio Nature Discovery of a Ni2+-dependent guanidine hydrolase in micro organism

Discovery of a Ni2+-dependent guanidine hydrolase in micro organism

0
74

[ad_1]

  • Du, E. et al. International patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Schulze, E. Ueber einige stickstoffhaltige Bestandtheile der Keimlinge von Vicia sativa. Z. Phys. Chem. 17, 193–216 (1893).


    Google Scholar
     

  • Wishart, D. S. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato, T., Yamagata, M. & Tsukahara, S. Guanidine compounds in fruit timber and their seasonal differences in citrus (Citrus unshiu Marc.). J. Jpn. Soc. Hortic. Sci. 55, 169–173 (1986).

    CAS 

    Google Scholar
     

  • Gund, P. Guanidine, trimethylenemethane, and «Y-delocalization.» Can acyclic compounds have «fragrant» stability? J. Chem. Educ. 49, 100 (1972).

    CAS 

    Google Scholar
     

  • Güthner, T., Mertschenk, B. & Schulz, B. In Ullmann’s Nice Chemical substances vol. 2, 657–672 (Wiley-VCH, 2014).

  • Strecker, A. Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin. Justus Liebigs Ann. Chem. 118, 151–177 (1861).


    Google Scholar
     

  • Iwanoff, N. N. & Awetissowa, A. N. The fermentative conversion of guanidine in urea. Biochem. Z. 231, 67–78 (1931).


    Google Scholar
     

  • Lenkeit, F., Eckert, I., Hartig, J. S. & Weinberg, Z. Discovery and characterization of a fourth class of guanidine riboswitches. Nucleic Acids Res. 48, 12889–12899 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvail, H., Balaji, A., Yu, D., Roth, A. & Breaker, R. R. Biochemical validation of a fourth guanidine riboswitch class in micro organism. Biochemistry 59, 4654–4662 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, J. W., Atilho, R. M., Sherlock, M. E., Stockbridge, R. B. & Breaker, R. R. Metabolism of free guanidine in micro organism is regulated by a widespread riboswitch class. Mol. Cell 65, 220–230 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sherlock, M. E. & Breaker, R. R. Biochemical validation of a 3rd guanidine riboswitch class in micro organism. Biochemistry 56, 359–363 (2016).


    Google Scholar
     

  • Sherlock, M. E., Malkowski, S. N. & Breaker, R. R. Biochemical validation of a second guanidine riboswitch class in micro organism. Biochemistry 56, 352–358 (2016).


    Google Scholar
     

  • Kermani, A. A., Macdonald, C. B., Gundepudi, R. & Stockbridge, R. B. Guanidinium export is the primal operate of SMR household transporters. Proc. Natl Acad. Sci. USA 115, 3060–3065 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinn, M., Hauth, F., Lenkeit, F., Weinberg, Z. & Hartig, J. S. Widespread bacterial utilization of guanidine as nitrogen supply. Mol. Microbiol. 116, 200–210 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, N. O. et al. Fixing the conundrum: widespread proteins annotated for urea metabolism in micro organism are carboxyguanidine deiminases mediating nitrogen assimilation from guanidine. Biochemistry 59, 3258–3270 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, J., Zhu, L., Fan, C., Wu, Y. & Xiang, S. Construction and performance of urea amidolyase. Biosci. Rep. 38, BSR20171617 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mobley, H. L., Island, M. D. & Hausinger, R. P. Molecular biology of microbial ureases. Microbiol. Rev. 59, 451–480 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazzei, L., Musiani, F. & Ciurli, S. The structure-based response mechanism of urease, a nickel dependent enzyme: story of an extended debate. J. Biol. Inorg. Chem. 25, 829–845 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uribe, E. et al. Practical evaluation of the Mn2+ requirement within the catalysis of ureohydrolases arginase and agmatinase – a historic perspective. J. Inorg. Biochem. 202, 110812 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Perozich, J., Hempel, J. & Morris, S. M. Jr Roles of conserved residues within the arginase household. Biochim. Biophys. Acta 1382, 23–37 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Sekowska, A., Danchin, A. & Risler, J. L. Phylogeny of associated capabilities: the case of polyamine biosynthetic enzymes. Microbiology 146, 1815–1828 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Sekula, B. The neighboring subunit is engaged to stabilize the substrate within the lively website of plant arginases. Entrance. Plant Sci. 11, 987 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quintero, M. J., Muro-Pastor, A. M., Herrero, A. & Flores, E. Arginine catabolism within the cyanobacterium Synechocystis sp. pressure PCC 6803 includes the urea cycle and arginase pathway. J. Bacteriol. 182, 1008–1015 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacasse, M. J., Summers, Ok. L., Khorasani-Motlagh, M., George, G. N. & Zamble, D. B. Bimodal nickel-binding website on Escherichia coli [NiFe]-hydrogenase metallochaperone HypA. Inorg. Chem. 58, 13604–13618 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, D., Gutekunst, Ok., Klissenbauer, M., Schulz-Friedrich, R. & Appel, J. Mutagenesis of hydrogenase accent genes of Synechocystis sp. PCC 6803. FEBS J. 273, 4516–4527 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Dowling, D. P., Di Costanzo, L., Gennadios, H. A. & Christianson, D. W. Evolution of the arginase fold and purposeful variety. Cell. Mol. Life Sci. 65, 2039–2055 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta, A., Mazumder, M., Alam, M., Gourinath, S. & Sau, A. Ok. Steel-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic operate. Biochem. J. 476, 3595–3614 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Di Costanzo, L. et al. Crystal construction of human arginase I at 1.29-Å decision and exploration of inhibition within the immune response. Proc. Natl Acad. Sci. USA 102, 13058–13063 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzek, B. E. et al. UniRef clusters: a complete and scalable various for enhancing sequence similarity searches. Bioinformatics 31, 926–932 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfano, M. & Cavazza, C. Construction, operate, and biosynthesis of nickel-dependent enzymes. Protein Sci. 29, 1071–1089 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, B. et al. A guanidine-degrading enzyme controls genomic stability of ethylene-producing cyanobacteria. Nat. Commun. 12, 5150 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGee, D. J. et al. Purification and characterization of Helicobacter pylori arginase, RocF: distinctive options among the many arginase superfamily. Eur. J. Biochem. 271, 1952–1962 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Arakawa, N., Igarashi, M., Kazuoka, T., Oikawa, T. & Soda, Ok. d-Arginase of Arthrobacter sp. KUJ 8602: characterization and its id with Zn2+-guanidinobutyrase. J. Biochem. 133, 33–42 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Saragadam, T., Kumar, S. & Punekar, N. S. Characterization of 4-guanidinobutyrase from Aspergillus niger. Microbiology 165, 396–410 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Viator, R. J., Relaxation, R. F., Hildebrandt, E. & McGee, D. J. Characterization of Bacillus anthracis arginase: results of pH, temperature, and cell viability on steel choice. BMC Biochem. 9, 15 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Antonio, E. L., Hai, Y. & Christianson, D. W. Construction and performance of non-native steel clusters in human arginase I. Biochemistry 51, 8399–8409 (2012).

    PubMed 

    Google Scholar
     

  • Andresen, E., Peiter, E. & Küpper, H. Hint steel metabolism in vegetation. J. Exp. Bot. 69, 909–954 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Eisenhut, M. Manganese homeostasis in cyanobacteria. Crops 9, 18 (2019).

    PubMed Central 

    Google Scholar
     

  • Burnat, M. & Flores, E. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic development within the heterocyst-forming cyanobacterium Anabaena. MicrobiologyOpen 3, 777–792 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. P., Yuan, Y. & Wolfenden, R. The burden borne by urease. J. Am. Chem. Soc. 127, 10828–10829 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, C. A. Jr & Wolfenden, R. The nonenzymatic decomposition of guanidines and amidines. J. Am. Chem. Soc. 136, 130–136 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Grobben, Y. et al. Structural insights into human Arginase-1 pH dependence and its inhibition by the small molecule inhibitor CB-1158. J. Struct. Biol. X 4, 100014 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Mills, L. A., McCormick, A. J. & Lea-Smith, D. J. Present information and up to date advances in understanding metabolism of the mannequin cyanobacterium Synechocystis sp. PCC 6803. Biosci. Rep. 40, BSR20193325 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giner-Lamia, J. et al. Identification of the direct regulon of NtcA throughout early acclimation to nitrogen hunger within the cyanobacterium Synechocystis sp PCC 6803. Nucleic Acids Res. 45, 11800–11820 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, S. & Hausinger, R. P. Biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. Biochemistry 55, 5989–5999 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Copeland, R. A. et al. An iron(IV)-oxo intermediate initiating l-arginine oxidation however not ethylene manufacturing by the 2-oxoglutarate-dependent oxygenase, ethylene-forming enzyme. J. Am. Chem. Soc. 143, 2293–2303 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, pressure histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61 (1979).


    Google Scholar
     

  • Geyer, J. W. & Dabich, D. Fast technique for willpower of arginase exercise in tissue homogenates. Anal. Biochem. 39, 412–417 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • van Anken, H. C. & Schiphorst, M. E. A kinetic willpower of ammonia in plasma. Clin. Chim. Acta 56, 151–157 (1974).

    PubMed 

    Google Scholar
     

  • Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamzin, V. S. P. A., Wilson, Ok. S. In Worldwide Tables for Crystallography Vol. F (eds Arnold, E. et al.) 525–528 (Kluwer, 2012).

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Ok. Options and growth of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. The Phenix software program for automated willpower of macromolecular constructions. Strategies 55, 94–106 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: extra and higher reference knowledge for improved all-atom construction validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Computerized atom sort and bond sort notion in molecular mechanical calculations. J. Mol. Graph. Mannequin. 25, 247–260 (2006).

    ADS 
    PubMed 

    Google Scholar
     

  • Maier, J. A. et al. ff14SB: enhancing the accuracy of protein aspect chain and spine parameters from ff99SB. J. Chem. Concept Comput. 11, 3696–3713 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Improvement and testing of a common amber drive subject. J. Comput. Chem. 25, 1157–1174 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Trott, O. & Olson, A. J. AutoDock Vina: enhancing the velocity and accuracy of docking with a brand new scoring operate, environment friendly optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap within the period of huge knowledge. Nature 556, 452–456 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemoine, F. et al. NGPhylogeny.fr: new technology phylogenetic providers for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: latest updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence emblem generator. Genome Res. 14, 1188–1190 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    SIN COMENTARIOS

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí