miércoles, diciembre 7, 2022
InicioNatureEarly Photo voltaic System instability triggered by dispersal of the gaseous disk

Early Photo voltaic System instability triggered by dispersal of the gaseous disk

[ad_1]

  • Tsiganis, Okay., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital structure of the enormous planets of the Photo voltaic System. Nature 435, 459–461 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morbidelli, A., Tsiganis, Okay., Crida, A., Levison, H. F. & Gomes, R. Dynamics of the enormous planets of the Photo voltaic System within the gaseous protoplanetary disk and their relationship to the present orbital structure. Astron. J. 134, 1790–1798 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Batygin, Okay., Brown, M. E. & Betts, H. Instability-driven dynamical evolution mannequin of a primordially five-planet outer Photo voltaic System. Astrophys. J. Lett. 744, L3 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Nesvorný, D. Dynamical evolution of the early Photo voltaic System. Ann. Rev. Astron. Astrophys. 56, 137–174 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Levison, H. F., Morbidelli, A., Tsiganis, Okay., Nesvorný, D. & Gomes, R. Late orbital instabilities within the outer planets induced by interplay with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Proof for very early migration of the Photo voltaic System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Mojzsis, S. J., Brasser, R., Kelly, N. M., Abramov, O. & Werner, S. C. Onset of large planet migration earlier than 4480 million years in the past. Astrophys. J. 881, 44 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Quarles, B. & Kaib, N. Instabilities within the early Photo voltaic System resulting from a self-gravitating disk. Astron. J. 157, 67 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Sousa, R. R. et al. Dynamical proof for an early large planet instability. Icarus 339, 113605 (2020).

    Article 

    Google Scholar
     

  • Pierens, A., Raymond, S. N., Nesvorny, D. & Morbidelli, A. Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Good fashions. Astrophys. J. Lett. 795, L11 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Ann. Rev. Astron. Astrophys. 49, 67–117 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Jacobson, S. A. et al. Extremely siderophile components in Earth’s mantle as a clock for the Moon-forming affect. Nature 508, 84–87 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Ann. Rev. Earth Planet. Sci. 45, 389–417 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, Okay. J. Mars’ development stunted by an early large planet instability. Icarus 311, 340–356 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Alexander, R., Pascucci, I., Andrews, S., Armitage, P. & Cieza, L. in Protostars and Planets Vol. VI (eds. Beuther, H. et al.) 475–496 (Univ. Arizona Press, 2014).

  • Ercolano, B. & Pascucci, I. The dispersal of planet-forming discs: idea confronts observations. R. Soc. Open Sci. 4, 170114 (2017).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Masset, F. S., Morbidelli, A., Crida, A. & Ferreira, J. Disk floor density transitions as protoplanet traps. Astrophys. J. 642, 478–487 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Romanova, M. M. et al. 3D simulations of planet trapping at disc-cavity boundaries. Mon. Not. R. Astron. Soc. 485, 2666–2680 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, B., Ormel, C. W. & Lin, D. N. C. Dynamical rearrangement of super-Earths throughout disk dispersal. I. Define of the magnetospheric rebound mannequin. Astron. Astrophys. 601, A15 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Liu, B. & Ormel, C. W. Dynamical rearrangement of super-Earths throughout disk dispersal. II. Evaluation of the magnetospheric rebound mannequin for planet formation situations. Astron. Astrophys. 606, A66 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Gomes, R., Levison, H. F., Tsiganis, Okay. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment interval of the terrestrial planets. Nature 435, 466–469 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nesvorný, D. & Morbidelli, A. Statistical research of the early Photo voltaic System’s instability with 4, 5, and 6 large planets. Astron. J 144, 117 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Clement, M. et al. Born eccentric: constraints on Jupiter and Saturn’s pre-instability orbits. Icarus 355, 114–122 (2021).

    Article 

    Google Scholar
     

  • Zellner, N. E. B. Cataclysm no extra: new views on the timing and supply of lunar impactors. Origins Life Evol. Biosphere 47, 261–280 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zahnle, Okay., Schenk, P., Levison, H. & Dones, L. Cratering charges within the outer Photo voltaic System. Icarus 163, 263–289 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Singer, Okay. N. et al. Influence craters on Pluto and Charon point out a deficit of small Kuiper belt objects. Science 363, 955–959 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raymond, S. N., Izidoro, A. & Morbidelli, A. In Planetary Astrobiology (eds Meadows, V. et al.), 287–324 (Univ. Arizona Press, 2020).

  • Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary methods. Astrophys. J. 711, 772–795 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Suzuki, D. et al. The exoplanet mass-ratio perform from the MOA-II Survey: discovery of a break and sure peak at a Neptune mass. Astrophys. J. 833, 145 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Pu, B. & Wu, Y. Spacing of Kepler planets: sculpting by dynamical instability. Astrophys. J. 807, 44 (2017).

    ADS 

    Google Scholar
     

  • Shakura, N. I. & Sunyaev, R. A. Black holes in binary methods. Observational look. Astron. Astrophys. 500, 33–51 (1973).

    ADS 

    Google Scholar
     

  • Alexander, R. D., Clarke, C. J. & Pringle, J. E. Photoevaporation of protoplanetary discs – I. Hydrodynamic fashions. Mon. Not. R. Astron. Soc. 369, 216–228 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Owen, J. E., Ercolano, B. & Clarke, C. J. Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. Mon. Not. R. Astron. Soc. 412, 13–25 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Haisch, J., Karl, E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in younger clusters. Astrophys. J. Lett. 553, L153–L156 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Luhman, Okay. L., Espaillat, C., Hartmann, L. & Calvet, N. The disk inhabitants of the Taurus star-forming area. Astrophys. J. Suppl. 186, 111–174 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Koepferl, C. M. et al. Disc clearing of younger stellar objects: proof for quick inside-out dispersal. Mon. Not. R. Astron. Soc. 428, 3327–3354 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Hayashi, C. Construction of the photo voltaic nebula, development and decay of magnetic fields and results of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).

    ADS 
    Article 

    Google Scholar
     

  • Paardekooper, S. J., Baruteau, C., Crida, A. & Kley, W. A torque formulation for non-isothermal kind I planetary migration – I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 401, 1950–1964 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Liu, B., Zhang, X., Lin, D. N. C. & Aarseth, S. J. Migration and development of protoplanetary embryos. II. Emergence of proto-gas-giant cores versus tremendous Earth progenitors. Astrophys. J. 798, 62 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Lin, D. N. C. & Papaloizou, J. On the tidal interplay between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys. J. 309, 846 (1986).

    ADS 
    Article 

    Google Scholar
     

  • Crida, A., Morbidelli, A. & Masset, F. On the width and form of gaps in protoplanetary disks. Icarus 181, 587–604 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Fernandez, J. A. & Ip, W.-H. Some dynamical features of the accretion of Uranus and Neptune: The alternate of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).

    ADS 
    Article 

    Google Scholar
     

  • Agnor, C. B. & Lin, N. C. On the migration of Jupiter and Saturn: constraints from linear fashions of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Kaib, N. A. & Chambers, J. E. The fragility of the terrestrial planets throughout a giant-planet instability. Mon. Not. R. Astron. Soc. 455, 3561–3569 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Aarseth, S. J. Gravitational N-Physique Simulations (Cambridge Univ. Press, 2003).

  • Chambers, J. A hybrid symplectic integrator that allows shut encounters between large our bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Laskar, J. Massive scale chaos and the spacing of the inside planets. Astron. Astrophys. 317, L75–L78 (1997).

    ADS 

    Google Scholar
     

  • Chambers, J. E. Making extra terrestrial planets. Icarus 152, 205–224 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Morbidelli, A., Brasser, R., Tsiganis, Okay., Gomes, R. & Levison, H. F. Setting up the secular structure of the photo voltaic system. I. The large planets. Astron. Astrophys. 507, 1041–1052 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Liu, B., Lambrechts, M., Johansen, A. & Liu, F. Tremendous-Earth plenty sculpted by pebble isolation round stars of various plenty. Astron. Astrophys. 631, A7 (2019).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí