lunes, septiembre 26, 2022
InicioNatureGlioblastoma mutations alter EGFR dimer construction to forestall ligand bias

Glioblastoma mutations alter EGFR dimer construction to forestall ligand bias

[ad_1]

  • 1.

    Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal development issue receptor mutations in lung most cancers. Nat. Rev. Most cancers 7, 169–181 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Brennan, C. W. et al. The somatic genomic panorama of glioblastoma. Cell 155, 462–477 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    An, Z., Aksoy, O., Zheng, T., Fan, Q. W. & Weiss, W. A. Epidermal development issue receptor and EGFRvIII in glioblastoma: signaling pathways and focused therapies. Oncogene 37, 1561–1575 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Wilson, Ok. J., Gilmore, J. L., Foley, J., Lemmon, M. A. & Riese, D. J., II. Useful selectivity of EGF household peptide development components: implications for most cancers. Pharmacol. Ther. 122, 1–8 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Freed, D. M. et al. EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics. Cell 171, 683–695 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Macdonald-Obermann, J. L. & Pike, L. J. Totally different epidermal development issue (EGF) receptor ligands present distinct kinetics and biased or partial agonism for homodimer and heterodimer formation. J. Biol. Chem. 289, 26178–26188 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Martínez-Jiménez, F. et al. A compendium of mutational most cancers driver genes. Nat. Rev. Most cancers 20, 555–572 (2020).

    PubMed 

    Google Scholar
     

  • 8.

    Eck, M. J. & Yun, C. H. Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung most cancers. Biochim. Biophys. Acta 1804, 559–566 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Tate, J. G. et al. COSMIC: {the catalogue} of somatic mutations in most cancers. Nucleic Acids Res. 47, D941–D947 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Heimberger, A. B. et al. Prognostic impact of epidermal development issue receptor and EGFRvIII in glioblastoma multiforme sufferers. Clin. Most cancers Res. 11, 1462–1466 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Eskilsson, E. et al. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro Oncol. 20, 743–752 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Lee, J. C. et al. Epidermal development issue receptor activation in glioblastoma by means of novel missense mutations within the extracellular area. PLoS Med. 3, e485 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Ng, P. Ok. et al. Systematic practical annotation of somatic mutations in most cancers. Most cancers Cell 33, 450–462 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Lu, C. et al. Structural proof for free linkage between ligand binding and kinase activation within the epidermal development issue receptor. Mol. Cell. Biol. 30, 5432–5443 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Garrett, T. P. J. et al. Crystal construction of a truncated epidermal development issue receptor extracellular area sure to remodeling development issue alpha. Cell 110, 763–773 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Ferguson, Ok. M. Construction-based view of epidermal development issue receptor regulation. Annu. Rev. Biophys. 37, 353–373 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Ogiso, H. et al. Crystal construction of the complicated of human epidermal development issue and receptor extracellular domains. Cell 110, 775–787 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Liebschner, D. et al. Polder maps: enhancing OMIT maps by excluding bulk solvent. Acta Crystallogr. D Struct. Biol. 73, 148–157 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Diwanji, D. et al. Buildings of the HER2–HER3–NRG1β complicated reveal a dynamic dimer interface. Nature 600, 339–343 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Alvarado, D., Klein, D. E. & Lemmon, M. A. Structural foundation for adverse cooperativity in development issue binding to an EGF receptor. Cell 142, 568–579 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Binder, Z. A. et al. Epidermal development issue receptor extracellular area mutations in glioblastoma current alternatives for medical imaging and therapeutic growth. Most cancers Cell 34, 163–177 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Orellana, L. et al. Oncogenic mutations on the EGFR ectodomain structurally converge to take away a steric hindrance on a kinase-coupled cryptic epitope. Proc. Natl Acad. Sci. USA 116, 10009–10018 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Fan, Q. W. et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and development in glioblastoma. Most cancers Cell 24, 438–449 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    An, Z. et al. EGFR cooperates with EGFRvIII to recruit macrophages in glioblastoma. Most cancers Res. 78, 6785–6794 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Friedmann-Morvinski, D. et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338, 1080–1084 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Del Vecchio, C. A. et al. EGFRvIII gene rearrangement is an early occasion in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms. Oncogene 32, 2670–2681 (2013).

    MathSciNet 
    PubMed 

    Google Scholar
     

  • 27.

    Emlet, D. R. et al. Concentrating on a glioblastoma most cancers stem-cell inhabitants outlined by EGF receptor variant III. Most cancers Res. 74, 1238–1249 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Alcantara Llaguno, S. et al. Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nat. Neurosci. 22, 545–555 (2019).

    PubMed 

    Google Scholar
     

  • 29.

    Jaiswal, B. S. et al. Oncogenic ERBB3 mutations in human cancers. Most cancers Cell 23, 603–617 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Hopkins, J. B., Gillilan, R. E. & Skou, S. BioXTAS RAW: enhancements to a free open-source program for small-angle X-ray scattering knowledge discount and evaluation. J. Appl. Cryst. 50, 1545–1553 (2017).

    CAS 

    Google Scholar
     

  • 31.

    Manalastas-Cantos, Ok. et al. ATSAS 3.0: expanded performance and new instruments for small-angle scattering knowledge evaluation. J. Appl. Crystallogr. 54, 343–355 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Lemmon, M. A. et al. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 16, 281–294 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    CCP4. The CCP4 suite: packages for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).


    Google Scholar
     

  • 35.

    McCoy, A. J. et al. Phaser crystallographic software program. J. Appl. Cryst. 40, 658–674 (2007).

    CAS 

    Google Scholar
     

  • 36.

    Emsley, P. & Cowtan, Ok. Coot: model-building instruments for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed 

    Google Scholar
     

  • 37.

    Good, O. S. et al. Exploiting construction similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction answer. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to mannequin anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Chen, V. B. et al. MolProbity: all-atom construction validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Dawson, J. P. et al. Epidermal development issue receptor dimerization and activation require ligand-induced conformational modifications within the dimer interface. Mol. Cell. Biol. 25, 7734–7742 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Ferguson, Ok. M., Darling, P. J., Mohan, M. J., Macatee, T. L. & Lemmon, M. A. Extracellular domains drive homo- however not hetero-dimerization of erbB receptors. EMBO J. 19, 4632–4643 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Essletzbichler, P. et al. Megabase-scale deletion utilizing CRISPR/Cas9 to generate a totally haploid human cell line. Genome Res. 24, 2059–2065 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Kiyatkin, A., van Alderwerelt van Rosenburgh, I. Ok., Klein, D. E. & Lemmon, M. A. Kinetics of receptor tyrosine kinase activation outline ERK signaling dynamics. Sci. Sign. 13, eaaz5267 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Aksamitiene, E., Hoek, J. B. & Kiyatkin, A. Multistrip western blotting: a instrument for comparative quantitative evaluation of a number of proteins. Strategies Mol. Biol. 1312, 197–226 (2015).

    PubMed 

    Google Scholar
     

  • 46.

    Gao, J. et al. Integrative evaluation of complicated most cancers genomics and medical profiles utilizing the cBioPortal. Sci. Sign. 6, pl1 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Therneau, T. M. A bundle for survival evaluation in R. https://CRAN.R-project.org/bundle=survival (2020).

  • 48.

    Kohsaka, S. et al. A technique of high-throughput practical analysis of EGFR gene variants of unknown significance in most cancers. Sci. Transl. Med. 9, eaan6566 (2017).

    PubMed 

    Google Scholar
     

  • 49.

    Neelam, B. et al. Construction–operate research of ligand-induced epidermal development issue receptor dimerization. Biochemistry 37, 4884–4891 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Thompson, S. A., Harris, A., Hoang, D., Ferrer, M. & Johnson, G. R. COOH-terminal prolonged recombinant amphiregulin with bioactivity comparable with naturally derived development issue. J. Biol. Chem. 271, 17927–17931 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Adam, R. et al. Modulation of the receptor binding affinity of amphiregulin by modification of its carboxyl terminal tail. Biochim. Biophys. Acta 1266, 83–90 (1995).

    PubMed 

    Google Scholar
     

  • 52.

    Bessman, N. J., Bagchi, A., Ferguson, Ok. M. & Lemmon, M. A. Advanced relationship between ligand binding and dimerization within the epidermal development issue receptor. Cell Rep. 9, 1306–1317 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Yu, S. et al. The non-small cell lung most cancers EGFR extracellular area mutation, M277E, is oncogenic and drug-sensitive. Onco Targets Ther. 10, 4507–4515 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Liu, P. et al. A single ligand is adequate to activate EGFR dimers. Proc. Natl Acad. Sci. USA 109, 10861–10866 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Bessman, N. J., Freed, D. M. & Lemmon, M. A. Placing collectively buildings of epidermal development issue receptors. Curr. Opin. Struct. Biol. 29, 95–101 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Singh, B., Carpenter, G. & Coffey, R. J. EGF receptor ligands: latest advances. F1000Res. 5, 2270 (2016).


    Google Scholar
     

  • 57.

    Macdonald, J. L. & Pike, L. J. Heterogeneity in EGF-binding affinities arises from adverse cooperativity in an aggregating system. Proc. Natl Acad. Sci. USA 105, 112–117 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Ferguson, Ok. M., Hu, C. & Lemmon, M. A. Insulin and epidermal development issue receptor members of the family share parallel activation mechanisms. Protein Sci. 29, 1331–1344 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Ferguson, Ok. M. et al. EGF prompts its receptor by eradicating interactions that autoinhibit ectodomain dimerization. Mol. Cell 11, 507–517 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Ramamurthy, V. et al. Buildings of adnectin/protein complexes reveal an expanded binding footprint. Construction 20, 259–269 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Matsuda, T. et al. Cell-free synthesis of practical antibody fragments to offer a structural foundation for antibody-antigen interplay. PLoS ONE 13, e0193158 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Li, S. et al. Structural foundation for inhibition of the epidermal development issue receptor by cetuximab. Most cancers Cell 7, 301–311 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Lee, J. J. et al. Enzymatic prenylation and oxime ligation for the synthesis of secure and homogeneous protein–drug conjugates for focused remedy. Angew. Chem. Int. Ed. Engl. 54, 12020–12024 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Alvarado, D., Klein, D. E. & Lemmon, M. A. ErbB2 resembles an autoinhibited invertebrate epidermal development issue receptor. Nature 461, 287–291 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí