miércoles, diciembre 7, 2022
InicioNatureIncreasing ocean meals manufacturing underneath local weather change

Increasing ocean meals manufacturing underneath local weather change

[ad_1]

  • United Nations. World Inhabitants Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (UN-DESA, 2017).

  • Costello, C. et al. The way forward for meals from the ocean. Nature 588, 95–100 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • IPCC. IPCC Particular Report on the Ocean and Cryosphere in a Altering Local weather (2019).

  • FAO. Mapping Provide and Demand for Animal-Supply Meals to 2030 (2011).

  • Foley, J. A. et al. International penalties of land use. Science 309, 570–574 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation pushed by city inhabitants progress and agricultural commerce within the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rockström, J. et al. Future water availability for international meals manufacturing: the potential of inexperienced water for rising resilience to international change. Water Resour. Res. 45, W00A12 (2009).

    Article 

    Google Scholar
     

  • IPCC. IPCC Particular Report on Local weather Change and Land (2019).

  • Poore, J. & Nemecek, T. Lowering meals’s environmental impacts by means of producers and shoppers. Science 360, 987–992 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Motion (2020).

  • Bryndum‐Buchholz, A. et al. Twenty-first-century local weather change impacts on marine animal biomass and ecosystem construction throughout ocean basins. Glob. Change Biol. 25, 459–472 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected most fisheries catch potential underneath local weather change within the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).

    Article 

    Google Scholar
     

  • Froehlich, H. E., Gentry, R. R. & Halpern, B. S. International change in marine aquaculture manufacturing potential underneath local weather change. Nat. Ecol. Evol. 2, 1745–1750 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to altering local weather on the international scale. Fish Fish. 18, 466–488 (2017).

    Article 

    Google Scholar
     

  • Szuwalski, C. S. & Hollowed, A. B. Local weather change and non-stationary inhabitants processes in fisheries administration. ICES J. Mar. Sci. 73, 1297–1305 (2016).

    Article 

    Google Scholar
     

  • Pinsky, M. L. et al. Making ready ocean governance for species on the transfer. Science 360, 1189–1191 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gaines, S. D. et al. Improved fisheries administration might offset many adverse results of local weather change. Sci. Adv. 4, eaao1378 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Free, C. M. et al. Practical fisheries administration reforms might mitigate the impacts of local weather change in most nations. PLoS ONE 15, e0224347 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Clapp, J. Meals self-sufficiency: making sense of it, and when it is sensible. Meals Coverage 66, 88–96 (2017).

    Article 

    Google Scholar
     

  • Barange, M., Bahri, T., Beveridge, M. & Cochrane, Okay. L. Impacts of Local weather Change on Fisheries and Aquaculture: Synthesis of Present Information, Adaptation and Mitigation Choices. Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).

  • Lester, S. E. et al. Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nat. Commun. 9, 945 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. International adoption of novel aquaculture feeds might considerably cut back forage fish demand by 2030. Nat. Meals 1, 301–308 (2020).

    Article 

    Google Scholar
     

  • Hua, Okay. et al. The way forward for aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Chavanne, H. et al. A complete survey on selective breeding applications and seed market within the European aquaculture fish trade. Aquacult. Int. 24, 1287–1307 (2016).

    Article 

    Google Scholar
     

  • Troell, M., Jonell, M. & Henriksson, P. J. G. Ocean house for seafood. Nat. Ecol. Evol. 1, 1224–1225 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • European Union. Fee Regulation (EC) No 710/2009 of 5 August 2009 Amending Regulation (EC) No 889/2008 laying down detailed guidelines for the implementation of Council Regulation (EC) No 834/2007, as regards laying down detailed guidelines on natural aquaculture animal and seaweed manufacturing. http://information.europa.eu/eli/reg/2009/710/oj (2009).

  • Golden, C. D. et al. Aquatic meals to nourish nations. Nature 598, 315–320 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Davies, I. P. et al. Governance of marine aquaculture: pitfalls, potential, and pathways ahead. Mar. Coverage 104, 29–36 (2019).

    Article 

    Google Scholar
     

  • Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem providers. Rev. Aquacult. 12, 499–512 (2020).

    Article 

    Google Scholar
     

  • Troell, M. et al. Ecological engineering in aquaculture — potential for built-in multi-trophic aquaculture (IMTA) in marine offshore methods. Aquaculture 297, 1–9 (2009).

    Article 

    Google Scholar
     

  • Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Maintain. 1, 298–303 (2018).

    Article 

    Google Scholar
     

  • Øverland, M., Mydland, L. T. & Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Meals Agric. 99, 13–24 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Besson, M. et al. Environmental impacts of genetic enchancment of progress charge and feed conversion ratio in fish farming underneath rearing density and nitrogen output limitations. J. Clear. Prod. 116, 100–109 (2016).

    Article 

    Google Scholar
     

  • Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Aguilar-Manjarrez, J., Soto, D., Brummett, R. E. Aquaculture Zoning, Website Choice and Space Administration underneath the Ecosystem Method to Aquaculture (FAO, 2017).

  • Soto, D. et al. In Impacts Of Local weather Change on Fisheries and Aquaculture: Synthesis of Present Information, Adaptation and Mitigation Choices Ch. 26 (FAO, 2018).

  • Darwin, C. The Variation of Animals and Vegetation Below Domestication (John Murray, 1868).

  • Gjedrem, T., Robinson, N. & Rye, M. The significance of selective breeding in aquaculture to satisfy future calls for for animal protein: a evaluate. Aquaculture 350–353, 117–129 (2012).

    Article 

    Google Scholar
     

  • Antonello, J. et al. Estimates of heritability and genetic correlation for physique size and resistance to fish pasteurellosis within the gilthead sea bream (Sparus aurata L.). Aquaculture 298, 29–35 (2009).

    Article 

    Google Scholar
     

  • Saillant, E., Dupont-Nivet, M., Haffray, P. & Chatain, B. Estimates of heritability and genotype–setting interactions for physique weight in sea bass (Dicentrarchus labrax L.) raised underneath communal rearing situations. Aquaculture 254, 139–147 (2006).

    Article 

    Google Scholar
     

  • Klinger, D. H., Levin, S. A. & Watson, J. R. The expansion of finfish in international open-ocean aquaculture underneath local weather change. Proc. R. Soc. B 284, 20170834 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salayo, N. D., Perez, M. L., Garces, L. R. & Pido, M. D. Mariculture growth and livelihood diversification within the Philippines. Mar. Coverage 36, 867–881 (2012).

    Article 

    Google Scholar
     

  • Boyce, D. G., Lotze, H. Okay., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses could widen socioeconomic fairness gaps. Nat. Commun. 11, 2235 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sumaila, U. R. et al. Advantages of the Paris Settlement to ocean life, economies, and other people. Sci. Adv. 5, eaau3855 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • United Nations. Remodeling Our World: The 2030 Agenda for Sustainable Growth (United Nations, 2017).

  • Hilborn, R. et al. Efficient fisheries administration instrumental in enhancing fish inventory standing. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Free, C. M. et al. Impacts of historic warming on marine fisheries manufacturing. Science 363, 979–983 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Costello, C. et al. International fishery prospects underneath contrasting administration regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by increasing from native successes to globalized options. Nat. Ecol. Evol. 1, 0179 (2017).

    Article 

    Google Scholar
     

  • Leape, J. et al. Know-how, Knowledge and New Fashions for Sustainably Managing Ocean Assets (World Assets Institute, 2020).

  • Anderson, C. R. et al. Scaling up from regional case research to a world dangerous algal bloom observing system. Entrance. Mar. Sci. 6, 250 (2019).

    Article 

    Google Scholar
     

  • Dunn, D. C., Maxwell, S. M., Boustany, A. M. & Halpin, P. N. Dynamic ocean administration will increase the effectivity and efficacy of fisheries administration. Proc. Natl Acad. Sci. USA 113, 668–673 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • FAO. Aquaculture Growth: 7. Aquaculture Governance and Sector Growth (2017).

  • Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M. & Cheung, W. W. L. International estimation of areas with appropriate environmental situations for mariculture species. PLoS ONE 13, e0191086 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jackson, A. Fish in-fish out ratio defined. Aquacult. Eur. 34, 5–10 (2009).


    Google Scholar
     

  • Tacon, A. G. J. & Metian, M. Feed issues: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquacult. 23, 1–10 (2015).

    Article 

    Google Scholar
     

  • Tacon, A. G. J. & Metian, M. International overview on using fish meal and fish oil in industrially compounded aquafeeds: traits and future prospects. Aquaculture 285, 146–158 (2008).

    CAS 
    Article 

    Google Scholar
     

  • World Financial institution. Inhabitants, Whole (2020); https://information.worldbank.org/indicator/SP.POP.TOTL

  • Edwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world meals provides has been systematically over reported. Mar. Coverage 106, 103547 (2019).

    Article 

    Google Scholar
     

  • Roberts, P. Conversion Components for Estimating the Equal Dwell Weight of Fisheries Merchandise (The Meals and Agriculture Group of the United Nations, 1998).

  • R Core Group. R: A Language and Atmosphere for Statistical Computing (R Basis for Statistical Computing, 2021).

  • Kaschner, Okay. et al. AquaMaps: Predicted Vary Maps for Aquatic Species https://www.aquamaps.org/ (2019).

  • García Molinos, J. et al. Local weather velocity and the long run international redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal manufacturing are food-grade fish. Fish Fish. 18, 837–844 (2017).

    Article 

    Google Scholar
     

  • Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Synthesis and comparative evaluation of physiological tolerance and life-history progress traits of marine aquaculture species. Aquaculture 460, 75–82 (2016).

    Article 

    Google Scholar
     

  • Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life historical past parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Froese, R. & Pauly, D. FishBase http://www.fishbase.org (2021).

  • Palomares, M. & Pauly, D. SeaLifeBase http://www.sealifebase.org (2019).

  • FAO. Cultured Aquatic Species (2019).

  • Dunne, J. P. et al. GFDL’s ESM2 international coupled local weather–carbon Earth system fashions. Half I: bodily formulation and baseline simulation traits. J. Clim. 25, 6646–6665 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Dunne, J. P. et al. GFDL’s ESM2 international coupled local weather–carbon Earth system fashions. Half II: carbon system formulation and baseline simulation traits. J. Clim. 26, 2247–2267 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Track, Z. et al. Centuries of month-to-month and 3-hourly international ocean wave information for previous, current, and future local weather analysis. Sci. Knowledge 7, 226 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gentry, R. R. et al. Mapping the worldwide potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Barton, A. et al. Impacts of coastal acidification on the Pacific Northwest shellfish trade and adaptation methods applied in response. Oceanography 25, 146–159 (2015).

    Article 

    Google Scholar
     

  • Froehlich, H. E., Smith, A., Gentry, R. R. & Halpern, B. S. Offshore aquaculture: I do know it after I see it. Entrance. Mar. Sci. 4, 154 (2017).

    Article 

    Google Scholar
     

  • World Financial institution. Adjusted Internet Nationwide Revenue per Capita (Present US$) (2019); https://information.worldbank.org/indicator/NY.ADJ.NNTY.PC.CD

  • World Financial institution. Pump Value for Diesel Gasoline (US$ per liter) (2019); https://information.worldbank.org/indicator/EP.PMP.DESL.CD

  • Piburn, J. wbstats: programmatic entry to the World Financial institution API. R package deal v.1.0.4 https://cran.r-project.org/internet/packages/wbstats/index.html (2018).

  • Rubino, M. (ed.) Offshore Aquaculture in america: Financial Issues, Implications & Alternatives NOAA Technical Memorandum NMFS F/SPO-103 (US Division of Commerce, 2008).

  • Jackson, A. & Newton, R. Undertaking to Mannequin the Use of Fisheries By-products within the Manufacturing of Marine Components, with Particular Reference to the Omega 3 Fatty Acids EPA and DHA (Institute Of Aquaculture, College Of Stirling And IFFO, 2016).

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí