domingo, noviembre 27, 2022
InicioNatureLeft–proper symmetry of zebrafish embryos requires somite floor pressure

Left–proper symmetry of zebrafish embryos requires somite floor pressure

[ad_1]

  • Oates, A. C., Morelli, L. G. & Ares, S. Patterning embryos with oscillations: construction, operate and dynamics of the vertebrate segmentation clock. Growth 139, 625–639 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naganathan, S. R. & Oates, A. C. Patterning and mechanics of somite boundaries in zebrafsh embryos. Semin. Cell Dev. Biol. 107, 170–178 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brend, T. & Holley, S. A. Balancing segmentation and laterality throughout vertebrate growth. Semin. Cell Dev. Biol. 20, 472–478 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Pourquié, O. Segmentation of the vertebrate backbone: From clock to scoliosis. Cell 145, 650–663 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang, W. J. et al. High theories for the etiopathogenesis of adolescent idiopathic scoliosis. J. Pediatr. Orthop. 31, S14–S27 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Kusumi, Okay. & Dunwoodie, S. L. The Genetics and Growth of Scoliosis (Springer, 2018).

  • Goldberg, C. J., Fogarty, E. E., Moore, D. P. & Dowling, F. E. Scoliosis and developmental principle adolescent idiopathic scoliosis. Backbone 22, 2228–2238 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cooke, J. & Zeeman, E. C. A clock and wavefront mannequin for management of the variety of repeated buildings throughout animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian bushy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vermot, J. et al. Retinoic acid controls the bilateral symmetry of somite formation within the mouse embryo. Science 308, 563–566 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vermot, J. & Pourquié, O. Retinoic acid coordinates somitogenesis and left–proper patterning in vertebrate embryos. Nature 435, 215–220 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawakami, Y., Raya, A., Raya, R. M., Rodríguez-Esteban, C. & Belmonte, J. C. I. Retinoic acid signalling hyperlinks left–proper uneven patterning and bilaterally symmetric somitogenesis within the zebrafish embryo. Nature 435, 165–171 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Packard, D. S. & Jacobson, A. G. Evaluation of the bodily forces that affect the form of chick somites. J. Exp. Zool. 207, 81–92 (1979).

    PubMed 
    Article 

    Google Scholar
     

  • Dias, A. S., de Almeida, I., Belmonte, J. M., Glazier, J. A. & Stern, C. D. Somites and not using a clock. Science 343, 791–795 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bard, J. B. L. A traction-based mechanism for somitogenesis within the chick. Rouxs Arch. Dev. Biol. 197, 513–517 (1988).

    PubMed 
    Article 

    Google Scholar
     

  • Nelemans, B. Okay., Schmitz, M., Tahir, H., Merks, R. M. & Smit, T. H. Somite division and new boundary formation by mechanical pressure. iScience 23, 100976 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grima, R. & Schnell, S. Can tissue floor pressure drive somite formation? Dev. Biol. 307, 248–257 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yabe, T., Hoshijima, Okay., Yamamoto, T. & Takada, S. Quadruple zebrafish mutant reveals completely different roles of Mesp genes in somite segmentation between mouse and zebrafish. Growth 143, 2842–2852 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Compagnon, J. et al. The notochord breaks bilateral symmetry by controlling cell shapes within the zebrafish laterality organ. Dev. Cell 31, 774–783 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guillon, E. et al. Fibronectin is a brilliant adhesive that each influences and responds to the mechanics of early spinal column growth. eLife 9, e48964 (2020).

    Article 

    Google Scholar
     

  • Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate physique axis elongation. Nature 561, 401–405 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim, S., Pochitaloff, M., Stooke-Vaughan, G. A. & Campàs, O. Embryonic tissues as lively foams. Nat. Phys. 17, 859–866 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shelton, E. R. et al. Stress-driven tissue fluidization bodily segments vertebrate somites. Preprint at bioRxiv https://doi.org/10.1101/2021.03.27.437325 (2021).

  • Robinson, E. E. α5β1 integrin mediates robust tissue cohesion. J. Cell Sci. 116, 377–386 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lecuit, T. & Lenne, P.-F. Cell floor mechanics and the management of cell form, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ehrig, S. et al. Floor pressure determines tissue form and progress kinetics. Sci. Adv. 5, eaav9394 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jülich, D., Geisler, R. & Holley, S. A. Integrinα5 and delta/notch signaling have complementary spatiotemporal necessities throughout zebrafish somitogenesis. Dev. Cell 8, 575–586 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Riedel-Kruse, I. H., Müller, C. & Oates, A. C. Synchrony dynamics throughout initiation, failure, and rescue of the segmentation clock. Science 317, 1911–1915 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, H., Holland, P. W. H. & Takahashi, T. Gene profiling of head mesoderm in early zebrafish growth: insights into the evolution of cranial mesoderm. EvoDevo 10, 14 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Das, D., Chatti, V., Emonet, T. & Holley, S. A. Patterned disordered cell movement ensures vertebral column symmetry. Dev. Cell 42, 170–180 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grimes, D. T. Making and breaking symmetry in growth, progress and illness. Growth 146, dev170985 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stern, C. D. & Bellairs, R. The roles of node regression and elongation of the realm pellucida within the formation of somites in avian embryos. J. Embryol. Exp. Morphol. 81, 75–92 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • Inexperienced, A. A., Mosaliganti, Okay. R., Swinburne, I. A., Obholzer, N. D. & Megason, S. G. Restoration of form and dimension in a growing organ pair: Form and Dimension Restoration in Creating Organs. Dev. Dyn. 246, 451–465 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abrams, M. J., Basinger, T., Yuan, W., Guo, C.-L. & Goentoro, L. Self-repairing symmetry in jellyfish by way of mechanically pushed reorganization. Proc. Natl Acad. Sci. USA 112, E3365–E3373 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hervieux, N. et al. Mechanical shielding of quickly rising cells buffers progress heterogeneity and contributes to organ form reproducibility. Curr. Biol. 27, 3468–3479 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eritano, A. S. et al. Tissue-scale mechanical coupling reduces morphogenetic noise to make sure precision throughout epithelial folding. Dev. Cell 53, 212–228 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huch, M., Knoblich, J. A., Lutolf, M. P. & Martinez-Arias, A. The hope and the hype of organoid analysis. Growth 144, 938–941 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Félix, M.-A. & Barkoulas, M. Pervasive robustness in organic programs. Nat. Rev. Genet. 16, 483–496 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • DiFrisco, J. & Jaeger, J. Genetic causation in advanced regulatory programs: an integrative dynamic perspective. BioEssays 42, 1900226 (2020).

    Article 

    Google Scholar
     

  • Weber, M., Mickoleit, M. & Huisken, J. Multilayer mounting for longterm mild sheet microscopy of zebrafish. J. Vis. Exp. 84, e51119 (2014).


    Google Scholar
     

  • Schindelin, J. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancak, P. Software program for bead-based registration of selective aircraft illumination microscopy information. Nat. Strategies 7, 417–418 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sendra, G. H., Hoerth, C. H., Wunder, C. & Lorenz, H. 2D map projections for visualization and quantitative evaluation of 3D fluorescence micrographs. Sci. Rep. 5, 12457 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Frangi, A. F., Niessen, W. J., Vincken, Okay. L. & Viergever, M. A. Multiscale vessel enhancement filtering, in Proc. Medical Picture Computing and Pc-Assisted Intervention—MICCAI’98 (Wells, W. M. et al.) Vol. 1496, 130–137 (Springer, 1998).

  • Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer: visualization and processing for giant picture information units. Nat. Strategies 12, 481–483 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Etournay, R. et al. Interaction of cell dynamics and epithelial pressure throughout morphogenesis of the Drosophila pupal wing. eLife 4, e07090 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guirao, B. et al. Unified quantitative characterization of epithelial tissue growth. eLife 4, e08519 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: elementary algorithms for scientific computing in Python. Nat. Strategies 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sawada, A. et al. Zebrafish Mesp household genes, mesp-a and mesp-b are segmentally expressed within the presomitic mesoderm, and Mesp-b confers the anterior id to the growing somites. Growth 127, 1691–1702 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Narayanan, R. & Oates, A. C. Detection of mRNA by entire mount in situ hybridization and DNA extraction for genotyping of zebrafish embryos. Bio Protoc. 9, e3193 (2019).

    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí