lunes, diciembre 5, 2022
InicioNaturePores and skin cells bear asynthetic fission to increase physique surfaces in...

Pores and skin cells bear asynthetic fission to increase physique surfaces in zebrafish

[ad_1]

  • Tai, Okay., Cockburn, Okay. & Greco, V. Flexibility sustains epithelial tissue homeostasis. Curr. Opin. Cell Biol. 60, 84–91 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dekoninck, S. et al. Defining the design rules of pores and skin dermis postnatal progress. Cell 181, 604–620 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gonzales, Okay. A. U. & Fuchs, E. Pores and skin and its regenerative powers: an alliance between stem cells and their area of interest. Dev. Cell 43, 387–401 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, R. T., Asharani, P. V. & Carney, T. J. Basal keratinocytes contribute to all strata of the grownup zebrafish dermis. PLoS ONE 9, e84858 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rakers, S. et al. Antimicrobial peptides (AMPs) from fish dermis: views for investigative dermatology. J. Make investments. Dermatol. 133, 1140–1149 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jones, Okay. B. et al. Quantitative clonal evaluation and single-cell transcriptomics reveal division kinetics, hierarchy, and destiny of oral epithelial progenitor cells. Cell Stem Cell 24, 183–192 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jones, Okay. B. & Klein, O. D. Oral epithelial stem cells in tissue upkeep and illness: the primary steps in an extended journey. Int. J. Oral Sci. 5, 121–129 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, C. H. et al. Multicolor cell barcoding expertise for long-term surveillance of epithelial regeneration in zebrafish. Dev. Cell 36, 668–680 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Livet, J. et al. Transgenic methods for combinatorial expression of fluorescent proteins within the nervous system. Nature 450, 56–62 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loulier, Okay. et al. Multiplex cell and lineage monitoring with combinatorial labels. Neuron 81, 505–520 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lam, P. Y., Mangos, S., Inexperienced, J. M., Reiser, J. & Huttenlocher, A. In vivo imaging and characterization of actin microridges. PLoS ONE 10, e0115639 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • van Loon, A. P., Erofeev, I. S., Maryshev, I. V., Goryachev, A. B. & Sagasti, A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. J. Cell Biol. 219, e201904144 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guzman, A., Ramos-Balderas, J. L., Carrillo-Rosas, S. & Maldonado, E. A stem cell proliferation burst varieties new layers of p63 expressing suprabasal cells throughout zebrafish postembryonic epidermal growth. Biol. Open 2, 1179–1186 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Slanchev, Okay. et al. The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity throughout zebrafish epiboly and pores and skin growth. PLoS Genet. 5, e1000563 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Richardson, R. J. et al. Periderm prevents pathological epithelial adhesions throughout embryogenesis. J. Clin. Make investments. 124, 3891–3900 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wyatt, T. P. et al. Emergence of homeostatic epithelial packing and stress dissipation via divisions oriented alongside the lengthy cell axis. Proc. Natl Acad. Sci. USA 112, 5726–5731 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, C. F. et al. Institution of a transgenic zebrafish line for superficial pores and skin ablation and useful validation of apoptosis modulators in vivo. PLoS ONE 6, e20654 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roan, H. Y., Tseng, T. L. & Chen, C. H. Complete-body clonal mapping identifies big dominant clones in zebrafish pores and skin dermis. Improvement 148, dev199669 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gillooly, J. F., Hein, A. & Damiani, R. Nuclear DNA content material varies with cell dimension throughout human cell sorts. Chilly Spring Harb. Perspect. Biol. 7, a019091 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ben-David, U. & Amon, A. Context is all the things: aneuploidy in most cancers. Nat. Rev. Genet. 21, 44–62 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fox, D. T. & Duronio, R. J. Endoreplication and polyploidy: insights into growth and illness. Improvement 140, 3–12 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wills, A. A., Holdway, J. E., Main, R. J. & Poss, Okay. D. Regulated addition of recent myocardial and epicardial cells fosters homeostatic cardiac progress and upkeep in grownup zebrafish. Improvement 135, 183–192 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawakami, A., Fukazawa, T. & Takeda, H. Early fin primordia of zebrafish larvae regenerate by the same progress management mechanism with grownup regeneration. Dev. Dyn. 231, 693–699 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Mateus, R. et al. In vivo cell and tissue dynamics underlying zebrafish fin fold regeneration. PLoS ONE 7, e51766 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hunter, G. L., Crawford, J. M., Genkins, J. Z. & Kiehart, D. P. Ion channels contribute to the regulation of cell sheet forces throughout Drosophila dorsal closure. Improvement 141, 325–334 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang, X. C. & Sachs, F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068–1071 (1989).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eisenhoffer, G. T. et al. Crowding induces reside cell extrusion to take care of homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Syeda, R. et al. Chemical activation of the mechanotransduction channel Piezo1. eLife 4, e07369 (2015).

    PubMed Central 
    Article 

    Google Scholar
     

  • Botello-Smith, W. M. et al. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat. Commun. 10, 4503 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gudipaty, S. A. et al. Mechanical stretch triggers speedy epithelial cell division via Piezo1. Nature 543, 118–121 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • von Mohl, H. Vermischte Schriften Botanischen Inhalts (Bei Ludwig Friedrich Fues, 1845).

  • Newport, J. & Dasso, M. On the coupling between DNA replication and mitosis. J. Cell Sci. Suppl. 12, 149–160 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raff, J. W. & Glover, D. M. Nuclear and cytoplasmic mitotic cycles proceed in Drosophila embryos by which DNA synthesis is inhibited with aphidicolin. J. Cell Biol. 107, 2009–2019 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ganier, O. et al. Mitosis with out DNA replication in mammalian somatic cells. Preprint at bioRxiv https://doi.org/10.1101/2020.07.08.193607 (2020).

  • Ellefsen, Okay. L. et al. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ glints. Commun. Biol. 2, 298 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lopez-Homosexual, J. M. et al. Apical stress fibers allow a scaling between cell mechanical response and space in epithelial tissue. Science 370, eabb2169 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Byrd, Okay. M. et al. Heterogeneity inside stratified epithelial stem cell populations maintains the oral mucosa in response to physiological stress. Cell Stem Cell 25, 814–829 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Improvement and stem cells of the esophagus. Semin. Cell Dev. Biol. 66, 25–35 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mosimann, C. et al. Ubiquitous transgene expression and Cre-based recombination pushed by the ubiquitin promoter in zebrafish. Improvement 138, 169–177 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rembold, M., Lahiri, Okay., Foulkes, N. S. & Wittbrodt, J. Transgenesis in fish: environment friendly choice of transgenic fish by co-injection with a fluorescent reporter assemble. Nat. Protoc. 1, 1133–1139 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ju, B. et al. Trustworthy expression of inexperienced fluorescent protein (GFP) in transgenic zebrafish embryos underneath management of zebrafish gene promoters. Dev. Genet. 25, 158–167 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, J. et al. Visualization of caspase-3-like exercise in cells utilizing a genetically encoded fluorescent biosensor activated by protein cleavage. Nat. Commun. 4, 2157 (2013).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. T. et al. Genetic reprogramming of positional reminiscence in a regenerating appendage. Curr. Biol. 29, 4193–4207 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Triemer, T. et al. Superresolution imaging of particular person replication forks reveals sudden prodrug resistance mechanism. Proc. Natl Acad. Sci. USA 115, E1366–E1373 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Colanesi, S. et al. Small molecule screening identifies targetable zebrafish pigmentation pathways. Pigment Cell Melanoma Res. 25, 131–143 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poss, Okay. D., Nechiporuk, A., Stringer, Okay. F., Lee, C. & Keating, M. T. Germ cell aneuploidy in zebrafish with mutations within the mitotic checkpoint gene mps1. Genes Dev. 18, 1527–1532 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Labun, Okay., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: an internet software for the subsequent technology of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: a CRISPR/Cas9 and TALEN internet software for genome enhancing. Nucleic Acids Res. 42, W401–W407 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tseng, T. L. et al. The RNA helicase Ddx52 features as a progress swap in juvenile zebrafish. Improvement 148, dev199578 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Talbot, J. C. & Amacher, S. L. A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. Zebrafish 11, 583–585 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bresciani, E., Broadbridge, E. & Liu, P. P. An environment friendly dissociation protocol for technology of single cell suspension from zebrafish embryos and larvae. MethodsX 5, 1287–1290 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • van Ham, T. J., Mapes, J., Kokel, D. & Peterson, R. T. Stay imaging of apoptotic cells in zebrafish. FASEB J. 24, 4336–4342 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Achanta, R. et al. SLIC superpixels in comparison with state-of-the-art superpixel strategies. IEEE Trans. Sample Anal. Mach. Intell. 34, 2274–2282 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inform. Idea 28, 129–137 (1982).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • MacQueen, J. in Proc. fifth Berkeley Symposium on Mathematical Statistics and Likelihood Vol. 1, 281–297 (Univ. California Press, 1967).

  • Lowe, D. G. in Proc. seventh IEEE Worldwide Convention on Pc Imaginative and prescient Vol. 1152, 1150–1157 (IEEE, 1999).

  • Lowe, D. G. Distinctive picture options from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004).

    Article 

    Google Scholar
     

  • Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: built-in library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Tschumperle, D. & Deriche, R. Vector-valued picture regularization with PDEs: a standard framework for various purposes. IEEE Trans. Sample Anal. 27, 506–517 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Jaqaman, Okay. et al. Sturdy single-particle monitoring in live-cell time-lapse sequences. Nat. Strategies 5, 695–702 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization evaluation in gentle microscopy. J. Microsc. 224, 213–232 (2006).

    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • van der Walt, S. et al. scikit-image: picture processing in Python. PeerJ 2, e453 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Otsu, N. A threshold choice technique from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9, 62–66 (1979).

    Article 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: basic algorithms for scientific computing in Python. Nat. Strategies 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí