domingo, noviembre 27, 2022
InicioNatureProgramme of self-reactive innate-like T cell-mediated most cancers immunity

Programme of self-reactive innate-like T cell-mediated most cancers immunity

[ad_1]

  • Zheng, C. et al. Panorama of infiltrating T cells in liver most cancers revealed by single-cell sequencing. Cell 169, 1342–1356.e1316 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Azizi, E. et al. Single-cell map of various immune phenotypes within the breast tumor microenvironment. Cell 174, 1293–1308.e1236 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simoni, Y. et al. Bystander CD8+ T cells are considerable and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Lineage monitoring reveals dynamic relationships of T cells in colorectal most cancers. Nature 564, 268–272 (2018).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zheng, L. et al. Pan-cancer single-cell panorama of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schumacher, T. N. & Schreiber, R. D. Neoantigens in most cancers immunotherapy. Science 348, 69–74 (2015).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response fee to PD-1 inhibition. New Engl. J. Med. 377, 2500–2501 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dadi, S. et al. Most cancers immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DuPage, M., Mazumdar, C., Schmidt, L. M., Cheung, A. F. & Jacks, T. Expression of tumour-specific antigens underlies most cancers immunoediting. Nature 482, 405–409 (2012).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsushita, H. et al. Most cancers exome evaluation reveals a T-cell-dependent mechanism of most cancers immunoediting. Nature 482, 400–404 (2012).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. S. & Mellman, I. Components of most cancers immunity and the cancer-immune set level. Nature 541, 321–330 (2017).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion throughout persistent viral an infection and most cancers. Annu. Rev. Immunol. 37, 457–495 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sharma, P. & Allison, J. P. The way forward for immune checkpoint remedy. Science 348, 56–61 (2015).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to information immune checkpoint blockade in most cancers remedy. Nat. Rev. Most cancers 16, 275–287 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumeister, S. H., Freeman, G. J., Dranoff, G. & Sharpe, A. H. Coinhibitory pathways in immunotherapy for most cancers. Annu. Rev. Immunol. 34, 539–573 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schneider, W. M., Chevillotte, M. D. & Rice, C. M. Interferon-stimulated genes: a fancy net of host defenses. Annu. Rev. Immunol. 32, 513–545 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yost, Ok. E. et al. Clonal substitute of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage, P. A. et al. Recognition of a ubiquitous self antigen by prostate cancer-infiltrating CD8+ T lymphocytes. Science 319, 215–220 (2008).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ise, W. et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat. Immunol. 11, 129–135 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hildner, Ok. et al. Batf3 deficiency reveals a essential function for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Starr, T. Ok., Jameson, S. C. & Hogquist, Ok. A. Optimistic and adverse choice of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by destiny mapping of RORγ+ cells. Science 305, 248–251 (2004).

    CAS 
    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Georgiev, H., Peng, C., Huggins, M. A., Jameson, S. C. & Hogquist, Ok. A. Classical MHC expression by DP thymocytes impairs the choice of non-classical MHC restricted innate-like T cells. Nat. Commun. 12, 2308 (2021).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stritesky, G. L., Jameson, S. C. & Hogquist, Ok. A. Choice of self-reactive T cells within the thymus. Annu. Rev. Immunol. 30, 95–114 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ruscher, R., Kummer, R. L., Lee, Y. J., Jameson, S. C. & Hogquist, Ok. A. CD8αα intraepithelial lymphocytes come up from two fundamental thymic precursors. Nat. Immunol. 18, 771–779 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gazit, R. et al. Fgd5 identifies hematopoietic stem cells within the murine bone marrow. J. Exp. Med. 211, 1315–1331 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruscher, R. et al. Intestinal CD8αα IELs derived from two distinct thymic precursors have staggered ontogeny. J. Exp. Med. 217, e20192336 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, O. et al. TOX transcriptionally and epigenetically packages CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in persistent viral an infection. Nature 571, 265–269 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Scott, A. C. et al. TOX is a essential regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chinen, T. et al. A vital function for the IL-2 receptor in Treg cell perform. Nat. Immunol. 17, 1322–1333 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correia, M. P. et al. Distinct human circulating NKp30+FcεRIγ+CD8+ T cell inhabitants exhibiting excessive pure killer-like antitumor potential. Proc. Natl Acad. Sci. USA 115, E5980–E5989 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perarnau, B. et al. Single H2Kb, H2Db and double H2KbDb knockout mice: peripheral CD8+ T cell repertoire and anti-lymphocytic choriomeningitis virus cytolytic responses. Eur. J. Immunol. 29, 1243–1252 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sosinowski, T. et al. CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells within the periphery with reminiscence phenotype and performance. J. Immunol. 190, 1936–1947 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic knowledge throughout totally different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Complete integration of single-cell knowledge. Cell 177, 1888–1902.e1821 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angerer, P. et al. future: diffusion maps for large-scale single-cell knowledge in R. Bioinformatics 32, 1241–1243 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell evaluation of differentiation knowledge. Bioinformatics 31, 2989–2998 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Trapnell, C. et al. The dynamics and regulators of cell destiny selections are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Single-cell mRNA quantification and differential evaluation with Census. Nat. Strategies 14, 309–315 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves advanced single-cell trajectories. Nat. Strategies 14, 979–982 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a quick spliced aligner with low reminiscence necessities. Nat. Strategies 12, 357–360 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mudge, J. M. & Harrow, J. Creating reference gene annotation for the mouse C57BL6/J genome meeting. Mamm. Genome 26, 366–378 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y., Smyth, G. Ok. & Shi, W. The Subread aligner: quick, correct and scalable learn mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq knowledge with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package deal for evaluating organic themes amongst gene clusters. OMICS 16, 284–287 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Distinct mechanisms outline murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. eLife 4, e09083 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Excessive-throughput, high-fidelity HLA genotyping with deep sequencing. Proc. Natl Acad. Sci. USA 109, 8676–8681 (2012).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefranc, M. P. et al. IMGT, the worldwide ImMunoGeneTics database. Nucleic Acids Res. 27, 209–212 (1999).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franklin, R. A. et al. The mobile and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. & Rudensky, A. Y. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350, 981–985 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morita, S., Kojima, T. & Kitamura, T. Plat-E: an environment friendly and steady system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Strategies 11, 783–784 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayans, S. et al. αβT cell receptors expressed by CD4CD8 αβ intraepithelial T cells drive their destiny into a singular lineage with uncommon MHC reactivities. Immunity 41, 207–218 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, B. D., Bunker, J. J., Ishizuka, I. E., Jabri, B. & Bendelac, A. Elevated T cell receptor signaling identifies a thymic precursor to the TCR αβ+CD4CD8β intraepithelial lymphocyte lineage. Immunity 41, 219–229 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A dedicated precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    CAS 
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí