sábado, octubre 1, 2022
InicioNatureReproducibility within the fabrication and physics of moiré supplies

Reproducibility within the fabrication and physics of moiré supplies

[ad_1]

  • 1.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 2.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). References 1,2 report the remark of a correlated insulating state and superconductivity in twisted bilayer graphene.

    CAS 
    ADS 

    Google Scholar
     

  • 3.

    Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 4.

    Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 5.

    He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).

    CAS 

    Google Scholar
     

  • 6.

    Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    CAS 

    Google Scholar
     

  • 7.

    Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 8.

    Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. 17, 374–380 (2020).


    Google Scholar
     

  • 9.

    Xu, S. et al. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nat. Phys. 17, 619–626 (2021).

    CAS 

    Google Scholar
     

  • 10.

    Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 11.

    Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metallic dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 12.

    Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 13.

    Wang, L. et al. Correlated digital phases in twisted bilayer transition metallic dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 14.

    Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard mannequin physics in transition metallic dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018). This reference reveals that the flat bands in moiré TMD buildings may be described by generalized Hubbard fashions, and that quite a lot of many-body floor states are attainable.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 15.

    Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 16.

    Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020). References 15,16 report a Mott insulator in WSe2/WS2 bilayer superlattices at half filling, and generalized Wigner crystal and ferromagnetic states at fractional fillings.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 17.

    Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 18.

    Chen, G. et al. Proof of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019). This reference studies a gate-tunable insulator state in an r-TLG/hBN moiré superlattice at half filling.

    CAS 

    Google Scholar
     

  • 19.

    Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 20.

    Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Park, J. M., Cao, Y., Watanabe, Okay., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 22.

    Hao, Z. et al. Electrical subject–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 23.

    Hofstadter, D. R. Vitality ranges and wave features of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

    CAS 
    ADS 

    Google Scholar
     

  • 24.

    Yankowitz, M. et al. Emergence of superlattice Dirac factors in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    CAS 

    Google Scholar
     

  • 25.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 26.

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Corridor impact in moire superlattices. Nature 497, 598–602 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 27.

    Hunt, B. et al. Huge Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 28.

    Wang, P. et al. Topological winding quantity change and damaged inversion symmetry in a Hofstadter’s butterfly. Nano Lett. 15, 6395–6399 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 29.

    Kim, Okay. et al. Tunable moiré bands and robust correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 30.

    Kim, Okay. et al. Van der Waals heterostructures with excessive accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 31.

    Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 32.

    Saito, Y., Ge, J., Watanabe, Okay., Taniguchi, T. & Younger, A. F. Unbiased superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    CAS 

    Google Scholar
     

  • 33.

    Chen, X.-D. et al. Excessive-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 28, 2563–2570 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Pizzocchero, F. et al. The new pick-up method for batch meeting of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 35.

    Borodin, B. R., Benimetskiy, F. A. & Alekseev, P. A. Research of native anodic oxidation regimes in MoSe2. Nanotechnology 32, 155304 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 36.

    Zhou, H. et al. Half and quarter metals in rhombohedral trilayer graphene. Preprint at https://arxiv.org/abs/2104.00653 (2021).

  • 37.

    Rosenberger, M. R. et al. Nano-“squeegee” for the creation of fresh 2D materials interfaces. ACS Appl. Mater. Interfaces 10, 10379–10387 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Wang, D. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 116, 126101 (2016).

    PubMed 
    ADS 

    Google Scholar
     

  • 39.

    Gustafsson, M. V. et al. Ambipolar Landau ranges and robust band-selective provider interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 40.

    Larentis, S. et al. Giant efficient mass and interaction-enhanced Zeeman splitting of Okay-valley electrons in MoSe2. Phys. Rev. B 97, 201407 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 41.

    Fallahazad, B. et al. Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2 Landau stage degeneracy, efficient mass, and unfavorable compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    PubMed 
    ADS 

    Google Scholar
     

  • 42.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 utilizing a van der Waals heterostructure system platform. Nat. Nanotechnol. 10, 534–540 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 43.

    Ghiotto, A. et al. Quantum criticality in twisted transition metallic dichalcogenides. Preprint at https://arxiv.org/abs/2103.09796 (2021).

  • 44.

    Li, T. et al. Steady Mott transition in semiconductor moiré superlattices. Preprint at https://arxiv.org/abs/2103.09779 (2021).

  • 45.

    Li, T. et al. Quantum anomalous Corridor impact from intertwined moiré bands. Preprint at https://arxiv.org/abs/2107.01796 (2021).

  • 46.

    Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 47.

    Cong, C. et al. Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2012).


    Google Scholar
     

  • 48.

    Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    PubMed 
    ADS 

    Google Scholar
     

  • 49.

    Zheng, Q. et al. Self-retracting movement of graphite microflakes. Phys. Rev. Lett. 100, 067205 (2008).

    PubMed 
    ADS 

    Google Scholar
     

  • 50.

    Liu, Z. et al. Statement of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).

    PubMed 
    ADS 

    Google Scholar
     

  • 51.

    Yang, J. et al. Statement of high-speed microscale superlubricity in graphite. Phys. Rev. Lett. 110, 255504 (2013).

    PubMed 
    ADS 

    Google Scholar
     

  • 52.

    Woods, C. R. et al. Macroscopic self-reorientation of interacting two-dimensional crystals. Nat. Commun. 7, 10800 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 53.

    Zhu, M. et al. Stacking transition in bilayer graphene attributable to thermally activated rotation. 2D Mater. 4, 011013 (2016).


    Google Scholar
     

  • 54.

    Feng, X., Kwon, S., Park, J. Y. & Salmeron, M. Superlubric sliding of graphene nanoflakes on graphene. ACS Nano 7, 1718–1724 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014). This reference studies the commensurate–incommensurate transition in monolayer graphene at very small angles to the underlying hBN substrates.

    CAS 

    Google Scholar
     

  • 56.

    Brown, L. et al. Twinning and twisting of tri- and bilayer graphene. Nano Lett. 12, 1609–1615 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 57.

    Alden, J. S. et al. Pressure solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 58.

    Xu, S. G. et al. Big oscillations in a triangular community of one-dimensional states in marginally twisted graphene. Nat. Commun. 10, 4008 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 59.

    Yoo, H. et al. Atomic and digital reconstruction on the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 60.

    Kazmierczak, N. P. et al. Pressure fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021). This reference maps the pressure fields and structural leisure in t-BLG utilizing Bragg interferometry.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 61.

    Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021). This reference demonstrates robust three-dimensional buckling reconstruction and huge in-plane pressure redistribution in WSe2/WS2 moiré heterostructures.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 62.

    Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011). This reference theoretically reveals the presence of flat bands in t-BLG and predicts the magic angle of 1.05°.

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 63.

    Ramires, A. & Lado, J. L. Electrically tunable gauge fields in tiny-angle twisted bilayer graphene. Phys. Rev. Lett. 121, 146801 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 64.

    De Sanctis, A. et al. Pressure-engineering of twist-angle in graphene/hBN superlattice units. Nano Lett. 18, 7919–7926 (2018).

    PubMed 
    ADS 

    Google Scholar
     

  • 65.

    Beechem, T. E., Ohta, T., Diaconescu, B. & Robinson, J. T. Rotational dysfunction in twisted bilayer graphene. ACS Nano 8, 1655–1663 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Kerelsky, A. et al. Maximized electron interactions on the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 67.

    Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D digital superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 68.

    Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 69.

    Jiang, Y. et al. Cost order and damaged rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 70.

    Choi, Y. et al. Digital correlations in twisted bilayer graphene close to the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    CAS 

    Google Scholar
     

  • 71.

    Uri, A. et al. Mapping the twist-angle dysfunction and Landau ranges in magic-angle graphene. Nature 581, 47–52 (2020). This reference maps the twist-angle dysfunction in t-BLG utilizing scanning SQUID microscopy.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 72.

    Zondiner, U. et al. Cascade of section transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 73.

    McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 74.

    Sainz-Cruz, H., Cea, T., Pantaleón, P. A. & Guinea, F. Excessive transmission in twisted bilayer graphene with angle dysfunction. Preprint at https://arxiv.org/abs/2105.03383 (2021).

  • 75.

    Lee, S. et al. Graphene switch in vacuum yielding a top quality graphene. Carbon 93, 286–294 (2015).

    CAS 

    Google Scholar
     

  • 76.

    Masubuchi, S. et al. Autonomous robotic looking and meeting of two-dimensional crystals to construct van der Waals superlattices. Nat. Commun. 9, 1413 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 77.

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 78.

    Liu, J. & Dai, X. Orbital magnetic states in moiré graphene techniques. Nat. Rev. Phys. 3, 367–382 (2021).

    CAS 

    Google Scholar
     

  • 79.

    Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 80.

    Balents, L., Dean, C. R., Efetov, D. Okay. & Younger, A. F. Superconductivity and robust correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    CAS 

    Google Scholar
     

  • 81.

    Liang, L. et al. Band geometry, Berry curvature, and superfluid weight. Phys. Rev. B 95, 024515 (2017).

    ADS 

    Google Scholar
     

  • 82.

    Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 83.

    Ma, C. et al. Moiré band topology in twisted bilayer graphene. Nano Lett. 20, 6076–6083 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 84.

    Tune, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 85.

    Po, H. C., Zou, L., Senthil, T. & Vishwanath, A. Devoted tight-binding fashions and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 86.

    Ahn, J., Park, S. & Yang, B.-J. Failure of Nielsen–Ninomiya theorem and fragile topology in two-dimensional techniques with space-time inversion symmetry: utility to twisted bilayer graphene at magic angle. Phys. Rev. X 9, 021013 (2019).

    CAS 

    Google Scholar
     

  • 87.

    Hu, X., Hyart, T., Pikulin, D. I. & Rossi, E. Geometric and standard contribution to the superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 123, 237002 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 88.

    Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii–Kosterlitz–Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).

    CAS 
    ADS 

    Google Scholar
     

  • 89.

    Xie, F., Tune, Z., Lian, B. & Bernevig, B. A. Topology-bounded superfluid weight in twisted bilayer graphene. Phys. Rev. Lett. 124, 167002 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 90.

    Tian, H. et al. Proof for flat band Dirac superconductor originating from quantum geometry. Preprint at https://arxiv.org/abs/2112.13401 (2021).

  • 91.

    Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 92.

    Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019). This reference studies the remark of a correlated insulating state, orbital magnetism and superconductivity at each integer filling of t-BLG.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 93.

    Stepanov, P. et al. Competing zero-field Chern insulators in superconducting twisted bilayer graphene. Preprint at https://arxiv.org/abs/2012.15126 (2020).

  • 94.

    An, L. et al. Interplay results and superconductivity signatures in twisted double-bilayer WSe2. Nanoscale Horiz. 5, 1309–1316 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 95.

    Rodan-Legrain, D. et al. Extremely tunable junctions and nonlocal Josephson impact in magic angle graphene tunneling units. Preprint at https://arxiv.org/abs/2011.02500 (2020).

  • 96.

    Vries, F. Okay. D. et al. Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2011.00011 (2020).

  • 97.

    Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 98.

    Codecido, E. et al. Correlated insulating and superconducting states in twisted bilayer graphene beneath the magic angle. Sci. Adv. 5, eaaw9770 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 99.

    Wu, S., Zhang, Z., Watanabe, Okay., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 100.

    Saito, Y. et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 17, 478–481 (2021).

    CAS 

    Google Scholar
     

  • 101.

    Wong, D. et al. Cascade of digital transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 102.

    Nuckolls, Okay. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 103.

    Serlin, M. et al. Intrinsic quantized anomalous Corridor impact in a moiré heterostructure. Science 367, 900–903 (2020). This reference studies the remark of an intrinsic QAH state (that’s, with out magnetic dopants) in t-BLG aligned to hBN.

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 104.

    Pierce, A. T. et al. Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/2101.04123 (2021).

  • 105.

    Sharpe, A. L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 106.

    Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator. Preprint at https://arxiv.org/abs/2006.08053 (2020).

  • 107.

    Zhang, F., Jung, J., Fiete, G. A., Niu, Q. A. & MacDonald, A. H. Spontaneous quantum Corridor states in chirally stacked few-layer graphene techniques. Phys. Rev. Lett. 106, 156801 (2011).

    PubMed 
    ADS 

    Google Scholar
     

  • 108.

    Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 109.

    Shi, Y. et al. Digital section separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 110.

    Lee, Y. et al. Gate tunable magnetism and large magnetoresistance in ABC-stacked few-layer graphene. Preprint at https://arxiv.org/abs/1911.04450 (2019).

  • 111.

    Geisenhof, F. R. et al. Quantum anomalous Corridor octet pushed by orbital magnetism in bilayer graphene. Nature 598, 53–58 (2021).

  • 112.

    Jin, C. et al. Stripe phases in WSe2/WS2 moiré superlattice. Preprint at https://arxiv.org/abs/2007.12068 (2020).

  • 113.

    Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Preprint at https://arxiv.org/abs/2007.11155 (2020).

  • 114.

    Li, T. et al. Cost-order-enhanced capacitance in semiconductor moiré superlattices. Preprint at https://arxiv.org/abs/2102.10823 (2021).

  • 115.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 116.

    Li, S.-Y. et al. Splitting of van Hove singularities in barely twisted bilayer graphene. Phys. Rev. B 96, 155416 (2017).

    ADS 

    Google Scholar
     

  • 117.

    Cao, Y. et al. Nematicity and competing orders in superconducting magic-angle graphene. Preprint at https://arxiv.org/abs/2004.04148 (2020).

  • 118.

    Jin, C. et al. Stripe phases in WSe2/WS2 moire superlattices. Preprint at https://arxiv.org/abs/2007.12068 (2020).

  • 119.

    Xian, L. et al. Realization of almost dispersionless bands with robust orbital anisotropy from harmful interference in twisted bilayer MoS2. Preprint at https://arxiv.org/abs/2004.02964 (2020).

  • 120.

    Zhou, H., Xie, T., Taniguchi, T., Watanabe, Okay. & Younger, A. F. Superconductivity in rhombohedral trilayer graphene. Preprint at https://arxiv.org/abs/2106.07640 (2021).

  • 121.

    Qiao, J.-B., Yin, L.-J. & He, L. Twisted graphene bilayer across the first magic angle engineered by heterostrain. Phys. Rev. B 98, 235402 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • 122.

    Huder, L. et al. Digital spectrum of twisted graphene layers below heterostrain. Phys. Rev. Lett. 120, 156405 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 123.

    Shi, H. et al. Giant-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun. 11, 371 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 124.

    Kariyado, T. & Vishwanath, A. Flat band in twisted bilayer Bravais lattices. Phys. Rev. Res. 1, 033076 (2019).

    CAS 

    Google Scholar
     

  • 125.

    Hejazi, Okay., Luo, Z.-X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA 117, 10721–10426 (2020).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Xu, Y. et al. Emergence of a noncollinear magnetic state in twisted bilayer CrI3. Preprint at https://arxiv.org/abs/2103:09850 (2021).

  • 127.

    Chittari, B. L., Chen, G., Zhang, Y., Wang, F. & Jung, J. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices. Phys. Rev. Lett. 122, 016401 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 128.

    Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 129.

    San-Jose, P., González, J. & Guinea, F. Non-Abelian gauge potentials in graphene bilayers. Phys. Rev. Lett. 108, 216802 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 130.

    Liu, J., Ma, Z., Gao, J. & Dai, X. Quantum valley Corridor impact, orbital magnetism, and anomalous Corridor impact in twisted multilayer graphene techniques. Phys. Rev. X 9, 031021 (2019).

    CAS 

    Google Scholar
     

  • 131.

    Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • 132.

    Bao, W. et al. Stacking-dependent band hole and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011).

    CAS 

    Google Scholar
     

  • 133.

    Angeli, M. & MacDonald, A. H. Γ valley transition metallic dichalcogenide moiré bands. Proc. Natl Acad. Sci. USA 118, e2021826118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí