domingo, diciembre 4, 2022
InicioNatureThe sphere-free Josephson diode in a van der Waals heterostructure

The sphere-free Josephson diode in a van der Waals heterostructure

[ad_1]

  • Misaki, Ok. & Nagaosa, N. Principle of the nonreciprocal Josephson impact. Phys. Rev. B 103, 245302 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hu, J., Wu, C. & Dai, X. Proposed design of a Josephson diode. Phys. Rev. Lett. 99, 067004 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Chen, C.-Z. et al. Uneven Josephson impact in inversion symmetry breaking topological supplies. Phys. Rev. B 98, 075430 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tokura, Y. & Nagaosa, N. Non-reciprocal responses from non-centrosymmetric quantum supplies. Nat. Commun. 9, 3740 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal section transitions. Nature 592, 363–369 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic impact. Science 372, 68–72 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sze, S. M. & Lee, M.-Ok. Semiconductor Gadgets: Physics and Know-how third edn (Wiley, 2012).

  • Ando, F. et al. Commentary of superconducting diode impact. Nature 584, 373–376 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wakatsuki, R. et al. Non-reciprocal cost transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, E. et al. Nonreciprocal superconducting NbSe2 antenna. Nat. Commun. 11, 5634 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Baumgartner, C. et al. Supercurrent rectification and magnetochiral results in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yuan, N. F. Q. & Fu, L. Supercurrent diode impact and finite momentum superconductivity. Preprint at https://arxiv.org/abs/2106.01909 (2021).

  • Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode impact. Phys. Rev. Lett. 128, 037001 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ideue, T. et al. Bulk rectification impact in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Ideue, T., Koshikawa, S., Namiki, H., Sasagawa, T. & Iwasa, Y. Big nonreciprocal magnetotransport in bulk trigonal superconductor PbTaSe2. Phys. Rev. Res. 2, 042046(R) (2020).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Gigantic magnetochiral anisotropy within the topological semimetal ZrTe5. Preprint at https://arxiv.org/abs/2011.03329 (2021).

  • Likharev, Ok. Ok. Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, 1986).

  • Likharev, Ok. Ok. Superconducting weak hyperlinks. Rev. Mod. Phys. 51, 101–159 (1979).

    ADS 
    Article 

    Google Scholar
     

  • Dubos, P. et al. Josephson essential present in an extended mesoscopic S-N-S junction. Phys. Rev. B 63, 064502 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Golubov, A. A., Kupriyanov, M. Y. & Il’ichev, E. The present-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411–469 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Walsh, E. D. et al. Josephson junction infrared single-photon detector. Science 372, 409–412 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Clarke, J. & Wilhelm, F. Ok. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Likharev, Ok. Ok. & Semenov, V. Ok. RSFQ logic/reminiscence household: a brand new Josephson-junction expertise for sub-terahertz-clock-frequency digital programs. IEEE Trans. Appl. Supercond. 1, 3–28 (1991).

    ADS 
    Article 

    Google Scholar
     

  • Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum info: an outlook. Science 339, 1169–1174 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jiang, J. et al. Exploration of latest ferromagnetic, semiconducting and biocompatible Nb3X8 (X = Cl, Br or I) monolayers with appreciable seen and infrared gentle absorption. Nanoscale 9, 2992–3001 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Pasco, C. M., El Baggari, I., Bianco, E., Kourkoutis, L. F. & McQueen, T. M. Tunable magnetic transition to a singlet floor state in a 2D van der Waals layered trimerized Kagome magnet. ACS Nano 13, 9457–9463 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, J. et al. Anomalous thickness-dependent electrical conductivity in van der Waals layered transition metallic halide, Nb3Cl8. J. Phys. Condens. Matter 32, 304004 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Haraguchi, Y. et al. Magnetic-nonmagnetic section transition with interlayer cost disproportionation of Nb3 trimers within the cluster compound Nb3Cl8. Inorg. Chem. 56, 3483–3488 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Sheckelton, J. P., Plumb, Ok. W., Trump, B. A., Broholm, C. L. & McQueen, T. M. Rearrangement of van der Waals stacking and formation of a singlet state at T = 90 Ok in a cluster magnet. Inorg. Chem. Entrance. 4, 481–490 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Castellanos-Gomez, A. et al. Deterministic switch of two-dimensional supplies by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2015).

    Article 

    Google Scholar
     

  • Kleiner, R., Koelle, D., Ludwig, F. & Clarke, J. Superconducting quantum interference gadgets: cutting-edge and functions. Proc. IEEE 92, 1534–1548 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Yabuki, N. et al. Supercurrent in van der Waals Josephson junction. Nat. Commun. 7, 10616 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kim, M. et al. Robust proximity Josephson coupling in vertically stacked NbSe2-graphene-NbSe2 van der Waals junctions. Nano Lett. 17, 6125–6130 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kitamura, S., Nagaosa, N. & Morimoto, T. Nonreciprocal Landau–Zener tunneling. Commun. Phys. 3, 63 (2020).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Filling-enforced obstructed atomic insulators. Preprint at https://arxiv.org/abs/2106.10276 (2021).

  • Xu, Y. et al. Three-dimensional actual house invariants, obstructed atomic insulators and a brand new precept for lively catalytic websites. Preprint at https://arxiv.org/abs/2111.02433 (2021).

  • Tune, T. et al. Big tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, Z. et al. Very giant tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Krasnov, V. M., Oboznov, V. A. & Pedersen, N. F. Fluxon dynamics in lengthy Josephson junctions within the presence of a temperature gradient or spatial nonuniformity. Phys. Rev. B 55, 14486–14498 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Goldman, A. M. & Kreisman, P. J. Meissner impact and vortex penetration in Josephson junctions. Phys. Rev. 164, 544–547 (1967).

    ADS 
    Article 

    Google Scholar
     

  • Kononov, A. et al. One-dimensional edge transport in few-layer WTe2. Nano Lett. 20, 4228–4233 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Watanabe, N. et al. The form dependency of two-dimensional magnetic area dependence of a Josephson junction. J. Appl. Phys. 103, 07C707 (2008).

    Article 

    Google Scholar
     

  • Vergniory, M. G. et al. A whole catalogue of high-quality topological supplies. Nature 566, 480–485 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    RELATED ARTICLES

    DEJA UNA RESPUESTA

    Por favor ingrese su comentario!
    Por favor ingrese su nombre aquí